Articles: traumatic-brain-injuries.
-
Review Case Reports
Treatment of Penetrating Nonmissile Traumatic Brain Injury. Case Series and Review of the Literature.
Penetrating traumatic brain injuries (TBIs), with the exception of gunshot wounds, are relatively rare occurrences and affect all ages. Clinical presentation varies depending on the mechanism of the injury. Prompt surgical treatment is often indicated and is influenced by patient clinical examination, anatomic trajectory, and the penetrating object's size, shape, and velocity. ⋯ Surgery in penetrating TBI is the treatment of choice. Our cases demonstrate how certain principles applied to individual patient scenarios may optimize clinical results. Severity of the injury and operative approach are among the most important considerations to achieve the best patient outcomes.
-
This prospective study of traumatic brain injury (TBI) patients investigates fractional anisotropy (FA) from chronic diffusion tensor imaging (DTI) in areas corresponding to persistent and transient traumatic axonal injury (TAI) lesions detected in clinical MRI from the early phase. Thirty-eight patients (mean 24.7 [range 13-63] years of age) with moderate-to-severe TBI and 42 age- and sex-matched healthy controls were included. Patients underwent 1.5-T clinical MRI in the early phase (median 7 days), including fluid-attenuated inversion recovery (FLAIR) and T2* gradient echo (T2*GRE) sequences. ⋯ The demonstrated linear trend of lower FA values from healthy controls to persistent lesion ROIs was found in both nonhemorrhagic and microhemorrhagic lesions and indicates a gradual increasing disruption of the microstructure. Lower FA values in persistent compared with transient lesions were found only in nonhemorrhagic lesions. Thus, clinical MRI techniques are able to depict important aspects of white matter pathology across the stages of TBI. © 2016 Wiley Periodicals, Inc.
-
Sporting organizations limit full-contact football practices to reduce concussion risk and based on speculation that repeated head impacts may result in long-term neurodegeneration. ⋯ A rule change limiting full-contact high school football practices appears to have been effective in reducing head-impact exposure across all players, with the largest reduction occurring among linemen. This finding is likely associated with the rule modification, particularly because the coaching staff and offensive scheme remained consistent, yet how this reduction influences concussion risk and long-term cognitive health remains unknown.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Jul 2016
Early coagulation events induce acute lung injury in a rat model of blunt traumatic brain injury.
Acute lung injury (ALI) and systemic coagulopathy are serious complications of traumatic brain injury (TBI) that frequently lead to poor clinical outcomes. Although the release of tissue factor (TF), a potent initiator of the extrinsic pathway of coagulation, from the injured brain is thought to play a key role in coagulopathy after TBI, its function in ALI following TBI remains unclear. In this study, we investigated whether the systemic appearance of TF correlated with the ensuing coagulopathy that follows TBI in ALI using an anesthetized rat blunt trauma TBI model. ⋯ Fibrin(ogen) deposition was also observed in the lungs within 60 min after TBI. Additionally, preadministration of a direct thrombin inhibitor, Refludan, attenuated lung injuries, thus implicating thrombin as a direct participant in ALI after TBI. The results from this study demonstrated that enhanced systemic TF may be an initiator of coagulation activation that contributes to ALI after TBI.
-
Curr Pain Headache Rep · Jul 2016
ReviewSpreading Depression in Primary and Secondary Headache Disorders.
Spreading depression (SD) is a wave of simultaneous and near-complete depolarization of virtually all cells in brain tissue associated with a transient "depression" of all spontaneous or evoked electrical activity in the brain. SD is widely accepted as the pathophysiological event underlying migraine aura and may play a role in headache pathogenesis in secondary headache disorders such as ischemic stroke, subarachnoid or intracerebral hemorrhage, traumatic brain injury, and epilepsy. Here, we provide an overview of the pathogenic mechanisms and propose plausible hypotheses on the involvement of SD in primary and secondary headache disorders. ⋯ SD can activate downstream trigeminovascular nociceptive pathways to explain the cephalgia in migraine, and possibly in secondary headache disorders as well. In healthy, well-nourished tissue (such as migraine), the intense transmembrane ionic shifts, the cell swelling, and the metabolic and hemodynamic responses associated with SD do not cause tissue injury; however, when SD occurs in metabolically compromised tissue (e.g., in ischemic stroke, intracranial hemorrhage, or traumatic brain injury), it can lead to irreversible depolarization, injury, and neuronal death. Recent non-invasive technologies to detect SDs in human brain injury may aid in the investigation of SD in headache disorders in which invasive recordings are not possible. SD explains migraine aura and progression of neurological deficits associated with other neurological disorders. Studying the nature of SD in headache disorders might provide pathophysiological insights for disease and lead to targeted therapies in the era of precision medicine.