Articles: traumatic-brain-injuries.
-
J Head Trauma Rehabil · Jul 2016
Persistent Hypogonadotropic Hypogonadism in Men After Severe Traumatic Brain Injury: Temporal Hormone Profiles and Outcome Prediction.
To (1) examine relationships between persistent hypogonadotropic hypogonadism (PHH) and long-term outcomes after severe traumatic brain injury (TBI); and (2) determine whether subacute testosterone levels can predict PHH. ⋯ PHH status in men predicts poor outcome after severe TBI, and PHH can accurately be predicted at 12 to 16 weeks.
-
Journal of neurochemistry · Jul 2016
Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury.
Traumatic brain injury (TBI) is associated with adverse effects on brain functions, including sensation, language, emotions and/or cognition. Therapies for improving outcomes following TBI are limited. A better understanding of the pathophysiological mechanisms of TBI may suggest novel treatment strategies to facilitate recovery and improve treatment outcome. ⋯ Moreover, TBI deregulates Ca(2+) -homeostasis triggering p25 production. The protein kinase Cdk5 is aberrantly activated by p25 leading to phosphorylation of substrates including tau and Rb protein. Loss of Cdk5 attenuates TBI lesion size, indicating that Cdk5 is a critical player in TBI pathogenesis and thus may be a suitable therapeutic target for TBI.
-
Management of nonemergent, nonacute subdural hematomas (SDHs) ranges from observation to burr-hole evacuation or craniotomy, but recurrence rates are high. We evaluated the safety and efficacy of tranexamic acid (TXA) for the treatment of residual SDHs after bedside twist-drill evacuation. ⋯ In our pilot study, chronic SDH volumes were reduced by 40.74% after SEPS drainage. The residual volume was reduced by an additional 91.31% during oral TXA treatment. No patients developed delayed recurrence or expansion of their SDHs. Further prospective studies are needed to evaluate the role of TXA for adjunctive treatment of chronic SDHs.
-
Acute traumatic coagulopathy (ATC) has been reported in the setting of isolated traumatic brain injury (iTBI) and is associated with poor outcomes. We aimed to evaluate the effectiveness of procoagulant agents administered to patients with ATC and iTBI during resuscitation, hypothesizing that timely normalization of coagulopathy may be associated with a decrease in mortality. A retrospective review of the Alfred Hospital trauma registry, Australia, was conducted and patients with iTBI (head Abbreviated Injury Score [AIS] ⩾3 and all other body AIS <3) and coagulopathy (international normalized ratio ⩾1.3) were selected for analysis. ⋯ Normalization of INR was independently associated with significantly lower mortality (adjusted odds ratio 0.10; 95% confidence interval 0.03-0.38). Normalization of INR was associated with improved mortality in patients with ATC in the setting of iTBI. As there was a substantial time lag between delivery of products and eventual normalization of coagulation, specific management of coagulopathy should be implemented as early as possible.
-
Experimental neurology · Jul 2016
Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury.
Traumatic brain injury (TBI) in humans can result in permanent tissue damage and has been linked to cognitive impairment that lasts years beyond the initial insult. Clinically effective treatment strategies have yet to be developed. Transplantation of human neural stem cells (hNSCs) has the potential to restore cognition lost due to injury, however, the vast majority of rodent TBI/hNSC studies to date have evaluated cognition only at early time points, typically <1month post-injury and cell transplantation. ⋯ Furthermore, while this model of TBI (cortical impact) targets primarily cortex and the underlying hippocampus and generates a large lesion cavity, hNSC transplantation facilitated cognitive recovery without affecting either lesion volume or total spared cortical or hippocampal tissue volume. Instead, we have found an overall increase in host hippocampal neuron survival in hNSC transplanted animals and demonstrate that a correlation exists between hippocampal neuron survival and cognitive performance. Together, these findings support the use of immunodeficient rodents in models of TBI that involve the transplantation of human cells, and suggest that hNSC transplantation may be a viable, long-term therapy to restore cognition after brain injury.