Articles: patients.
-
Diagnosis of sepsis is complicated by non-specific clinical definitions and delays in laboratory analysis using tests which may have very poor predictive values. The use of host biomarker signature sets, which when measured in combination have high predictive values, offers a paradigm shift forwards for rapid, near-patient diagnosis. These analyses more closely mirror the rapid blood chemistry and hematology analyses which often are used for near-patient testing and diagnosis.
-
Jt Comm J Qual Patient Saf · Jan 2013
Editorial CommentPatients as reviewers of quality and safety.
-
Editorial Comment
A protocol guided by transpulmonary thermodilution and lactate levels for resuscitation of patients with severe burns.
Over-resuscitation is deleterious in many critically ill conditions, including major burns. For more than 15 years, several strategies to reduce fluid administration in burns during the initial resuscitation phase have been proposed, but no single or simple parameter has shown superiority. ⋯ The authors' results confirm that resuscitation can be achieved with below-normal levels of preload but at the price of a fluid administration greater than predicted by the Parkland formula (2 to 4 mL/kg per% burn). The classic approach based on an adapted Parkland equation may still be the simplest until further studies identify the optimal bundle of resuscitation goals.
-
Data suggest that treatment of critical illness-related corticosteroid insufficiency after traumatic brain injury (TBI) with a stress dose of hydrocortisone may improve the neurological outcome and the mortality rate. The mineralocorticoid properties of hydrocortisone may reduce the rate of hyponatremia and of brain swelling. ⋯ Considering side effects, corticosteroids are not equal; when a high dose of synthetic corticosteroids seems detrimental, a strategy using a stress dose of hydrocortisone seems attractive. Finally, results from a large multicenter study are needed to close the debate regarding the use of hydrocortisone in TBI patients.
-
Editorial Comment
Eubaric hyperoxia: controversies in the management of acute traumatic brain injury.
Controversy exists on the role of hyperoxia in major trauma with brain injury. Hyperoxia on arterial blood gas has been associated with acute lung injury and pulmonary complications, impacting clinical outcome. The hyperoxia could be reflective of the physiological interventions following major systemic trauma. ⋯ The risk of low brain oxygen is most acute in the first 24 to 48 hours after injury. The administration of a high fraction of inspired oxygen (0.6 to 1.0) in the emergency room may be justifiable until ICU admission for the placement of invasive neurocritical care monitoring systems. Thereafter, fraction of inspired oxygen levels need to be careful titrated to prevent low brain oxygen levels.