Articles: neuropathic-pain.
-
Frontiers in neurology · Jan 2020
ReviewEffect of Repetitive Transcranial Magnetic Stimulation on Pain Management: A Systematic Narrative Review.
Recently, clinicians have been using repetitive transcranial magnetic stimulation (rTMS) for treating various pain conditions. This systematic narrative review aimed to examine the use and efficacy of rTMS for controlling various pain conditions. A PubMed search was conducted for articles that were published until June 7, 2019 and used rTMS for pain alleviation. ⋯ Although data on the use of rTMS for orofacial pain, including trigeminal neuralgia, phantom pain, low back pain, myofascial pain syndrome, pelvic pain, and complex regional pain syndrome, were promising, there was insufficient evidence to determine the efficacy of rTMS for treating these conditions. Therefore, further studies are needed to validate the effects of rTMS on pain relief in these conditions. Overall, this review will help guide clinicians in making informed decisions regarding whether rTMS is an appropriate option for managing various pain conditions.
-
Clinical Trial
Allodynography: Reliability of a New Procedure for Objective Clinical Examination of Static Mechanical Allodynia.
There is a need for reliable and valid clinical assessment tools for quantifying allodynia in neuropathic pain. Allodynography has been proposed as a useful standardized procedure for clinical assessment of mechanical allodynia. This study (www.clinicaltrials.gov NCT02070367) undertook preliminary investigation of the measurement properties of allodynography, a new standardized clinical examination procedure for mapping the area of cutaneous allodynia. ⋯ This preliminary study supports the inter-rater and test-retest reliability of allodynography. Studies on larger samples in multiple contexts and reporting other measurement properties are warranted.
-
Previous studies have shown that oral administration of the NMDAR modulator NYX-2925 alleviates pain in several animal models of neuropathic pain and this appears to be through mPFC, but not spinal, mediated mechanisms. While much is known about the impact of neuropathic pain on NMDAR-mediated signaling in the spinal cord, limited studies have focused on the brain. In the current study, we assess signaling changes associated with NMDAR-mediated plasticity in the mPFC and the impact of NYX-2925 administration on the normalization of these signaling changes. ⋯ The analgesic effect of NYX-2925 appears dependent on this restoration of Src activation in the mPFC, as co-administering Src activation inhibitors prevented the NYX-2925 analgesic effect. Overall, these data suggest that NMDAR-mediated signaling plays a key role in neuropathic pain, albeit in different directions in the spinal cord vs. the mPFC. Furthermore, the analgesic effect of NYX-2925 appears to involve a restoration of NMDAR-mediated signaling in the mPFC.
-
Chronic pain following spinal cord injury (SCI) is associated with electrical hyperactivity (spontaneous and evoked) in primary nociceptors. Cyclic adenosine monophosphate (cAMP) signaling is an important contributor to nociceptor excitability, and knockdown of the cAMP effector, exchange protein activated by cAMP (EPAC), has been shown to relieve pain-like responses in several chronic pain models. To examine potentially distinct roles of each EPAC isoform (EPAC1 and 2) in maintaining chronic pain, we used rat and mouse models of contusive spinal cord injury (SCI). ⋯ This was consistent with our finding that neither EPAC1-/- nor EPAC2-/- mice were protected against SCI-induced chronic pain as assessed with an operant mechanical conflict test. Thus, EPAC1 and 2 activity may play a redundant role in mouse nociceptors, although no corresponding change in EPAC protein expression levels was detected after SCI. Despite some differences between these species, our data demonstrate a fundamental role for both EPAC1 and EPAC2 in mechanisms maintaining nociceptor hyperactivity and chronic pain after SCI.
-
Chemotherapy-induced peripheral neuropathy (CIPN) is a major, dose-limiting side effect of treatment with neurotoxic cancer treatments which can result in long-term impairment. Deficits often reflect a large fiber polyneuropathy, however small fiber involvement resulting in neuropathic pain and autonomic dysfunction can occur. Quantification of both CIPN and small fiber neuropathy (SFN) remains a challenge. ⋯ Accurately identifying subgroups of patients with neuropathic symptoms which may respond to existing pain medication may reduce the impact of CIPN and improve long-term quality of life as well as provide better categorization of patients for future clinical trials of neuroprotective and treatment strategies for CIPN. PERSPECTIVE: This review provides a critical analysis of SFN associated with neurotoxic cancer treatments and the assessment tools for evaluating small fiber dysfunction in cancer patients. Quantification of small fiber involvement in CIPN will assist in identifying subgroups of patients with neuropathic symptoms which may respond to existing pain medications.