Articles: neuropathic-pain.
-
Case Reports
Effect of Bilateral Anterior Cingulotomy on Chronic Neuropathic Pain with Severe Depression.
The presence of neuropathic pain can severely impinge on emotional regulation and activities of daily living including social activities, resulting in diminished life satisfaction. Unfortunately, the majority of patients with neuropathic pain do not experience an amelioration of symptoms from conventional therapies, even when multimodal therapies are used. Chronic refractory neuropathic pain is usually accompanied by severe depression that is prone to incur suicidal events; thus clinical management of chronic neuropathic pain and depression presents a serious challenge for clinicians and patients. ⋯ Bilateral anterior cingulotomy may serve as an alternative treatment for medically refractory neuropathic pain, especially for patients who also experience depression.
-
Transl Perioper Pain Med · Jan 2019
BIX01294, a G9a inhibitor, alleviates nerve injury-induced pain hypersensitivities during both development and maintenance periods.
Genetic knockdown or knockout of the histone methytransferase G9a in the injured dorsal root ganglion (DRG) has been shown to alleviate neuropathic pain development. However, the application of genetic strategy in clinic is highly limited. The present study sought to examine the effect of intrathecal BIX01294, a specific G9a inhibitor, on the development and maintenance of pain hypersensitivities caused by unilateral L5 spinal nerve injury (SNL) or chronic constriction injury (CCI) to the sciatic nerve in rats. ⋯ These effects were dose-dependent. Intrathecal administration of BIX01294 also blocked the SNL-induced increase in the level of H3K9me2, a marker of G9a activity, and reversed SNL-induced downregulation of Oprm1 mRNA, Oprk1 mRNA, Oprd1 mRNA, Kcna2 mRNA, and Kcna4 mRNA, the downstream targets of G9a, in the ipsilateral L5 DRG. These findings further implicate that G9a as a potential target in the management of neuropathic pain.
-
Journal of pain research · Jan 2019
Rational treatment of chemotherapy-induced peripheral neuropathy with capsaicin 8% patch: from pain relief towards disease modification.
Chemotherapy-induced peripheral neuropathy (CIPN) with associated chronic pain is a common and disabling condition. Current treatments for neuropathic pain in CIPN are largely ineffective, with unfavorable side-effects. The capsaicin 8% patch (capsaicin 179 mg patch) is approved for the treatment of neuropathic pain: a single topical cutaneous application can produce effective pain relief for up to 12 weeks. We assessed the therapeutic potential of capsaicin 8% patch in patients with painful CIPN, and its mechanism of action. ⋯ Capsaicin 8% patch provides significant pain relief in CIPN, and may lead to regeneration and restoration of sensory nerve fibers ie, disease modification.
-
The Ochsner journal · Jan 2019
Case ReportsLaminoplasty for Cervical Spinal Cord Stimulator Implantation in Patients With Cervical Spondylosis and Fusion: A Technical Note.
Background: Epidural spinal cord stimulator (SCS) implantation is a commonly used strategy for treating refractory neuropathic pain, but the literature on the technical aspects of cervical SCS surgery remains scarce. Degenerative cervical stenosis and prior fusion surgery are relatively frequent conditions in this population, and the optimal method for cervical lead placement among such patients has not been established. Decompressive laminectomy may be required for cervical SCS placement in the presence of spinal stenosis. ⋯ Case Series: We present a surgical technique for cervical SCS implantation and the cases of 3 patients with significant spinal stenosis and/or prior fusion. In these patients, the paddle lead placement was safely achieved using cervical laminoplasty techniques. Conclusion: In addition to stabilizing the epidural paddle lead, laminoplasty offers several potential advantages compared to decompression alone.
-
Review
The Etiological Contribution of GABAergic Plasticity to the Pathogenesis of Neuropathic Pain.
Neuropathic pain developing after peripheral or central nerve injury is the result of pathological changes generated through complex mechanisms. Disruption in the homeostasis of excitatory and inhibitory neurons within the central nervous system is a crucial factor in the formation of hyperalgesia or allodynia occurring with neuropathic pain. The central GABAergic pathway has received attention for its extensive distribution and function in neural circuits, including the generation and development of neuropathic pain. ⋯ In this review, we describe possible mechanisms associated with GABAergic plasticity, such as central sensitization and GABAergic interneuron apoptosis, and the epigenetic etiologies of GABAergic plasticity in neuropathic pain. Moreover, we summarize potential therapeutic targets of GABAergic plasticity that may allow for successful relief of hyperalgesia from nerve injury. Finally, we compare the effects of the GABAergic system in neuropathic pain to other types of chronic pain to understand the contribution of GABAergic plasticity to neuropathic pain.