Articles: neuropathic-pain.
-
Spinal plasticity, a key process mediating neuropathic pain development, requires ubiquitination-dependent protein turnover. Presynaptic active zone proteins have a crucial role in regulating vesicle exocytosis, which is essential for synaptic plasticity. Nevertheless, the mechanism for ubiquitination-regulated turnover of presynaptic active zone proteins in the progression of spinal plasticity-associated neuropathic pain remains unclear. Here, after research involving Sprague Dawley rats, we reported that spinal nerve ligation (SNL), in addition to causing allodynia, enhances the Rab3-interactive molecule-1α (RIM1α), a major active zone protein presumed to regulate neural plasticity, specifically in the synaptic plasma membranes (SPMs) of the ipsilateral dorsal horn. Spinal RIM1α-associated allodynia was mediated by Fbxo3, which abates Fbxl2-dependent RIM1α ubiquitination. Subsequently, following deubiquitination, enhanced RIM1α directly binds to CaV2.2, resulting in increased CaV2.2 expression in the SPMs of the dorsal horn. While exhibiting no effect on Fbxo3/Fbxl2 signaling, the focal knockdown of spinal RIM1α expression reversed the SNL-induced allodynia and increased spontaneous EPSC (sEPSC) frequency by suppressing RIM1α-facilitated CaV2.2 expression in the dorsal horn. Intrathecal applications of BC-1215 (a Fbxo3 activity inhibitor), Fbxl2 mRNA-targeting small-interfering RNA, and ω-conotoxin GVIA (a CaV2.2 blocker) attenuated RIM1α upregulation, enhanced RIM1α expression, and exhibited no effect on RIM1α expression, respectively. These results confirm the prediction that spinal presynaptic Fbxo3-dependent Fbxl2 ubiquitination promotes the subsequent RIM1α/CaV2.2 cascade in SNL-induced neuropathic pain. Our findings identify a role of the presynaptic active zone protein in pain-associated plasticity. That is, RIM1α-facilitated CaV2.2 expression plays a role in the downstream signaling of Fbxo3-dependent Fbxl2 ubiquitination/degradation to promote spinal plasticity underlying the progression of nociceptive hypersensitivity following neuropathic injury. ⋯ Ubiquitination is a well known process required for protein degradation. Studies investigating pain pathology have demonstrated that ubiquitination contributes to chronic pain by regulating the turnover of synaptic proteins. Here, we found that the spinal presynaptic active zone protein Rab3-interactive molecule-1α (RIM1α) participates in neuropathic pain development by binding to and upregulating the expression of CaV2.2. In addition, Fbxo3 modifies this pathway by inhibiting Fbxl2-mediated RIM1α ubiquitination, suggesting that presynaptic protein ubiquitination makes a crucial contribution to the development of neuropathic pain. Research in this area, now in its infancy, could potentially provide a novel therapeutic strategy for pain relief.
-
Randomized Controlled Trial Multicenter Study
Ultramicronized palmitoylethanolamide in spinal cord injury neuropathic pain: A randomized, double-blind, placebo-controlled trial.
Neuropathic pain and spasticity after spinal cord injury (SCI) represent significant problems. Palmitoylethanolamide (PEA), a fatty acid amide that is produced in many cells in the body, is thought to potentiate the action of endocannabinoids and to reduce pain and inflammation. This randomized, double-blind, placebo-controlled, parallel multicenter study was performed to investigate the effect of ultramicronized PEA (PEA-um) as add-on therapy on neuropathic pain in individuals with SCI. ⋯ There was no difference in mean pain intensity between PEA-um and placebo treatment (P = 0.46, mean reductions in pain scores 0.4 (-0.1 to 0.9) vs 0.7 (0.2-1.2); difference of means 0.3 (-0.4 to 0.9)). There was also no effect of PEA-um as add-on therapy on spasticity, insomnia, or psychological functioning. PEA was not associated with more adverse effects than placebo.
-
Multicenter Study
The reciprocal associations between catastrophizing and pain outcomes in patients being treated for neuropathic pain: a cross-lagged panel analysis study.
Catastrophizing is recognized as a key psychosocial factor associated with pain-related negative outcomes in individuals with chronic pain. Longitudinal studies are needed to better understand the temporal relationship between these constructs. The aim of this study was to determine if changes in catastrophizing early in treatment predicted subsequent changes in pain intensity and interference later in treatment, or alternately, if early changes in pain intensity and interference predicted subsequent changes in catastrophizing. ⋯ The findings are consistent with theoretical models hypothesizing a causal impact of catastrophizing on pain, suggesting a mutual causation between these factors. The results support that treatments targeting catastrophizing may influence other pain-related outcomes, and conversely that treatments aiming to reduce pain could potentially influence catastrophizing. There may therefore be multiple paths to positive outcomes.
-
Randomized Controlled Trial
An Exploratory Human Laboratory Experiment Evaluating Vaporized Cannabis in the Treatment of Neuropathic Pain from Spinal Cord Injury and Disease.
Using 8-hour human laboratory experiments, we evaluated the analgesic efficacy of vaporized cannabis in patients with neuropathic pain related to injury or disease of the spinal cord, most of whom were experiencing pain despite traditional treatment. After obtaining baseline data, 42 participants underwent a standardized procedure for inhaling 4 puffs of vaporized cannabis containing either placebo, 2.9%, or 6.7% delta 9-THC on 3 separate occasions. A second dosing occurred 3 hours later; participants chose to inhale 4 to 8 puffs. This flexible dosing was used to attempt to reduce the placebo effect. Using an 11-point numerical pain intensity rating scale as the primary outcome, a mixed effects linear regression model showed a significant analgesic response for vaporized cannabis. When subjective and psychoactive side effects (eg, good drug effect, feeling high, etc) were added as covariates to the model, the reduction in pain intensity remained significant above and beyond any effect of these measures (all P < .0004). Psychoactive and subjective effects were dose-dependent. Measurement of neuropsychological performance proved challenging because of various disabilities in the population studied. Because the 2 active doses did not significantly differ from each other in terms of analgesic potency, the lower dose appears to offer the best risk-benefit ratio in patients with neuropathic pain associated with injury or disease of the spinal cord. ⋯ A crossover, randomized, placebo-controlled human laboratory experiment involving administration of vaporized cannabis was performed in patients with neuropathic pain related to spinal cord injury and disease. This study supports consideration of future research that would include longer duration studies over weeks to months to evaluate the efficacy of medicinal cannabis in patients with central neuropathic pain.
-
Uncoupling the protein-protein interaction between collapsin response mediator protein 2 (CRMP2) and N-type voltage-gated calcium channel (CaV2.2) with an allosteric CRMP2-derived peptide (CBD3) is antinociceptive in rodent models of inflammatory and neuropathic pain. We investigated the efficacy, duration of action, abuse potential, and neurobehavioral toxicity of an improved mutant CRMP2 peptide. A homopolyarginine (R9)-conjugated CBD3-A6K (R9-CBD3-A6K) peptide inhibited the CaV2.2-CRMP2 interaction in a concentration-dependent fashion and diminished surface expression of CaV2.2 and depolarization-evoked Ca influx in rat dorsal root ganglia neurons. ⋯ Continuous subcutaneous infusion of R9-CBD3-A6K over a 24- to 72-hour period reversed tactile allodynia and ongoing pain, demonstrating a lack of tolerance over this time course. Importantly, continuous infusion of R9-CBD3-A6K did not affect motor activity, anxiety, depression, or memory and learning. Collectively, these results validate the potential therapeutic significance of targeting the CaV-CRMP2 axis for treatment of neuropathic pain.