Articles: neuropathic-pain.
-
Chem. Biol. Interact. · Aug 2016
The nitroxyl donor, Angeli's salt, reduces chronic constriction injury-induced neuropathic pain.
Chronic pain is a major health problem worldwide. We have recently demonstrated the analgesic effect of the nitroxyl donor, Angeli's salt (AS) in models of inflammatory pain. In the present study, the acute and chronic analgesic effects of AS was investigated in chronic constriction injury of the sciatic nerve (CCI)-induced neuropathic pain in mice. ⋯ Moreover, chronic AS diminishes CCI-induced mechanical and thermal hyperalgesia by reducing the activation of spinal cord microglia and astrocytes, decreasing TNF-α, IL-1β and IL-33 cytokines expression. This spinal cord immune modulation was more prominent in the chronic treatment with AS. Thus, nitroxyl limits CCI-induced neuropathic pain by reducing spinal cord glial cells activation.
-
J Pharm Biomed Anal · Aug 2016
Subchronic administration of (R,S)-ketamine induces ketamine ring hydroxylation in Wistar rats.
Subchronic administration of (R,S)-ketamine, (R,S)-Ket, is used in the treatment of neuropathic pain, in particular Complex Regional Pain Syndrome, but the effect of this protocol on the metabolism of (R,S)-Ket is unknown. In this study, daily administration of a low dose of (R,S)-Ket for 14-days to Wistar rats was conducted to determine the impact of sub-chronic dosing on the pharmacokinetics of (R,S)-Ket and its major metabolites. ⋯ The metabolism of (R,S)-Ket predominately occurs via two microsomal enzyme-mediated pathways: (R,S)-Ket⇒(R,S)-norketamine⇒(2S,6S;2R,6R)-hydroxynorketamine and (2S,4R;2R,4S)-hydroxynorketamine and the (R,S)-Ket⇒(2S,6R;2R,6S)-hydroxyketamine⇒(2S,6R;2R,6S)-hydroxynorketamine and (2S,6S;2R,6R)-hydroxynorketamine. The results indicate that the activity of both metabolic pathways are increased by subchronic administration of (R,S)-Ket producing new metabolite patterns and potential differences in clinical effects.
-
The painDETECT Questionnaire (PDQ) is commonly used as a screening tool to discriminate between neuropathic pain (NP) and nociceptive pain, based on the self-report of symptoms, including pain qualities, numbness, and pain to touch, cold, or heat. However, there are minimal data about whether the PDQ is differentially sensitive to different sensory phenotypes in NP. The aim of the study was to analyze whether the overall PDQ score or its items reflect phenotypes of sensory loss in NP as determined by quantitative sensory testing. ⋯ Patients with loss of thermal sensation (2 and 4) significantly more often reported pain evoked by light touch, and patients with loss of mechanical sensation (3 and 4) significantly more often reported numbness and significantly less often burning sensations and pain evoked by light touch. Although the PDQ was not designed to assess sensory loss, single items reflect thermal and/or mechanical sensory loss at group level, but because of substantial variability, the PDQ does not allow for individual allocation of patients into sensory profiles. It will be useful to develop screening tools according to the current definition of NP.
-
Support Care Cancer · Aug 2016
Functional vitamin B12 deficiency in advanced malignancy: implications for the management of neuropathy and neuropathic pain.
Treatment of neuropathic pain and chemotherapy-induced peripheral neuropathy (CIPN) in patients with malignancy is often unsuccessful. Functional vitamin B12 deficiency, defined by elevated levels of the B12-dependent metabolites, methylmalonic acid (MMA), and/or homocysteine, despite normal B12 values, may cause neuropathy and is associated with disorders linked to increased oxidative stress. Since both cancer and neurotoxic antineoplastic agents increase oxidative stress, a role for functional B12 deficiency in CIPN was considered. ⋯ Functional vitamin B12 deficiency is common in subjects with advanced malignancy. Further studies are needed to determine if this disorder is a risk factor for CIPN and if B12 therapy has a role in the management and/or prevention of neuropathy and neuropathic pain in this population.
-
Randomized Controlled Trial
Repetitive Transcranial Magnetic Stimulation for phantom limb pain in landmine victims: A double-blinded, randomized, sham-controlled trial.
We evaluated the effects of repetitive transcranial magnetic stimulation (rTMS) in the treatment of phantom limb pain (PLP) in land mine victims. Fifty-four patients with PLP were enrolled in a randomized, double-blinded, placebo-controlled, parallel group single-center trial. The intervention consisted of real or sham rTMS of M1 contralateral to the amputated leg. rTMS was given in series of 20 trains of 6-second duration (54-second intertrain, intensity 90% of motor threshold) at a stimulation rate of 10 Hz (1,200 pulses), 20 minutes per day, during 10 days. For the control group, a sham coil was used. The administration of active rTMS induced a significantly greater reduction in pain intensity (visual analogue scale scores) 15 days after treatment compared with sham stimulation (-53.38 ± 53.12% vs -22.93 ± 57.16%; mean between-group difference = 30.44%, 95% confidence interval, .30-60.58; P = .03). This effect was not significant 30 days after treatment. In addition, 19 subjects (70.3%) attained a clinically significant pain reduction (>30%) in the active group compared with 11 in the sham group (40.7%) 15 days after treatment (P = .03). The administration of 10 Hz rTMS on the contralateral primary motor cortex for 2 weeks in traumatic amputees with PLP induced significant clinical improvement in pain. ⋯ High-frequency rTMS on the contralateral primary motor cortex of traumatic amputees induced a clinically significant pain reduction up to 15 days after treatment without any major secondary effect. These results indicate that rTMS is a safe and effective therapy in patients with PLP caused by land mine explosions.