Articles: neuropathic-pain.
-
Journal of neurosurgery · Mar 2016
Motor cortex stimulation and neuropathic pain: how does motor cortex stimulation affect pain-signaling pathways?
Neuropathic pain is often severe. Motor cortex stimulation (MCS) is used for alleviating neuropathic pain, but the mechanism of action is still unclear. This study aimed to understand the mechanism of action of MCS by investigating pain-signaling pathways, with the expectation that MCS would regulate both descending and ascending pathways. ⋯ This study demonstrated that MCS effectively attenuated neuropathic pain. MCS modulated ascending and descending pain pathways. It regulated neuropathic pain by affecting the striatum, periaqueductal gray, cerebellum, and thalamic area, which are thought to regulate the descending pathway. MCS also appeared to suppress activation of the VPL, which is part of the ascending pathway.
-
Below-level central neuropathic pain (CNP) affects a large proportion of spinal cord injured individuals. To better define the dynamic changes of the spinal cord neural network contributing to the development of CNP after spinal cord injury (SCI), we characterized the morphological and behavioral correlates of CNP in female C57BL/6 mice after a moderate T11 contusion SCI (50 kdyn) and the influence of moderate physical activity. Compared with sham-operated animals, injured mice developed mechanical allodynia 2 weeks post injury when tested with small-diameter von Frey hair filaments (0.16 g and 0.4 g filament), but presented hyporesponsiveness to noxious mechanical stimuli (1.4 g filament). ⋯ Analysis of IB4-labeled nonpeptidergic sensory fibers revealed no differences between experimental groups. Abnormalities in temperature sensation were not influenced by physical activity. Thus, treadmill training partially resolves signs of below-level CNP after SCI and modulates the density of CGRP-labeled fibers.
-
Clinical studies show that chronic pain can spread to adjacent or even distant body regions in some patients. However, little is known about how this happens. In this study, we found that partial infraorbital nerve transection (p-IONX) in MRL/MPJ mice induced not only marked and long-lasting orofacial thermal hyperalgesia but also thermal hyperalgesia from day 3 postoperatively (PO) and tactile allodynia from day 7 PO in bilateral hind paws. ⋯ In addition, microglial activation after p-IONX transmitted caudally from the Vc in the medulla to lumber dorsal horn in a time-dependent manner. Inhibition of microglial activation by minocycline at early but not late stage after p-IONX postponed and attenuated pain sensitization in the hind paw. These results indicate that neuropathic pain after p-IONX in MRL/MPJ mice spreads from the orofacial region to distant somatic regions and that a rostral-caudal transmission of central sensitization in the spinal cord is involved in the spreading process of pain hypersensitivity.
-
The c-Jun N-terminal kinase (JNK) in the central nervous system plays a critical role in the processing of neuropathic pain. Docosahexaenoic acid (DHA), a predominant omega-3 polyunsaturated fatty acid in the central nervous system, has a neuroprotective efficacy. In this study, we examined the relationships between JNK activation in the cuneate nucleus (CN) and behavioral hypersensitivity after chronic constriction injury (CCI) of the median nerve. ⋯ DHA treatment decreased p-JNK and OX-42 levels, diminished the release of proinflammatory cytokines and improved behavioral hypersensitivity following CCI. In conclusion, median nerve injury-induced microglial JNK activation in the CN modulated development of behavioral hypersensitivity. DHA has analgesic effects on neuropathic pain, at least in part, by means of suppressing a microglia-mediated inflammatory response through the inhibition of JNK signaling pathway.
-
Previous studies investigating the pathophysiology of neuropathic pain caused by injury to the spinal cord suggest that pain may result, at least in part, from maladaptive plasticity in the somatosensory cortex and associated pain networks. However, little is known about the molecular and cellular mechanisms leading to maladaptive plasticity in the cortex and how they contribute to the development of neuropathic pain. AMPA-type glutamate receptors (GluARs) mediate fast excitatory synaptic transmission in the mammalian brain and play an important role in pain processing. ⋯ Experiments in rats and mice revealed that maladaptive plasticity and hypersensitivity after spinal cord lesion (SCL) are associated with a reduction in the fraction of GluA1 subunits that are phosphorylated at serine 831 (S831) in the hindlimb representation of S1 (S1HL). Manipulations that reduce the fraction of phosphorylated S831 in S1HL of non-lesioned animals, including low-frequency electrical stimulation and viral-mediated gene transfer of mutant S831, were associated with the development of hypersensitivity. Taken together, these findings suggest that phosphorylation of GluA1 at S831 plays an important role in the development of hypersensitivity after SCL.