Articles: neuropathic-pain.
-
The neurophysiological basis of pain relief due to spinal cord stimulation (SCS) and the related cortical processing of sensory information are not completely understood. The aim of this study was to use resting state functional magnetic resonance imaging (rs-fMRI) to detect changes in cortical networks and cortical processing related to the stimulator-induced pain relief. ⋯ SCS reduces the affective component of pain resulting in optimal pain relief. Study shows a decreased connectivity between somatosensory and limbic areas associated with optimal pain relief due to SCS.
-
Oxaliplatin, a chemotherapy drug used to treat colorectal cancer, induces specific sensory neurotoxicity signs that are aggravated by cold and mechanical stimuli. Here we examined the preventive effects of Bee Venom (BV) derived phospholipase A₂ (bvPLA₂) on oxaliplatin-induced neuropathic pain in mice and its immunological mechanism. The cold and mechanical allodynia signs were evaluated by acetone and von Frey hair test on the hind paw, respectively. ⋯ Daily treatment with bvPLA₂ (0.2 mg/kg, i.p.) for five consecutive days prior to the oxaliplatin injection markedly inhibited the development of cold and mechanical allodynia, and suppressed infiltration of macrophages and the increase of IL-1β level in the DRG. Such preventive effects of bvPLA₂ were completely blocked by depleting regulatory T cells (Tregs) with CD25 antibody pre-treatments. These results suggest that bvPLA₂ may prevent oxaliplatin-induced neuropathic pain by suppressing immune responses in the DRG by Tregs.
-
Prog. Neuropsychopharmacol. Biol. Psychiatry · Jan 2016
Beneficial properties of maraviroc on neuropathic pain development and opioid effectiveness in rats.
Targeting chemokine signaling pathways is crucial in neuropathy development. In this study, we investigated the influence of chronic administration of maraviroc (CCR5 antagonist) on nociception and opioid effectiveness during neuropathy, which develops as a result of chronic constriction injury (CCI) of the sciatic nerve. To investigate the mechanism of action of maraviroc, we measured the expression of glial cell markers, CCR5 and certain CCR5 ligands (CCL3, CCL4, CCL5, CCL7, CCL11), in the spinal cord and dorsal root ganglia (DRG) of vehicle- and maraviroc-treated, CCI-exposed rats. ⋯ In vitro primary culture studies showed that CCL3, CCL4, CCL5 and CCL7 (but not CCL11) were of microglial and astroglial origin and were up-regulated after LPS stimulation. Our results indicate that maraviroc not only attenuated the development of neuropathic pain symptoms due to significant modulation of neuroimmune interactions but also intensified the analgesic properties of morphine and buprenorphine. In sum, our results suggest the pharmacological modulation of CCR5 by maraviroc as a novel therapeutic approach for co-treatment of patients receiving opioid therapy for neuropathy.
-
The reported prevalence of neuropathic pain ranges from 6.9% to 10%; however the only Canadian study reported 17.9%. The objective of this study was to describe the epidemiology of neuropathic pain in Canada. A cross-sectional survey was conducted in a random sample of Canadian adults. ⋯ The low response rate and a slightly older and less educated sample than the Canadian population may have led to an overestimate of neuropathic pain. Population prevalence varies by screening tool used, indicating more work is needed to develop reliable measures. Population level screening targeted towards high risk groups should improve the sensitivity and specificity of screening, while clinical examination of those with positive screening results will further refine the estimate of prevalence.
-
Acute pain in response to injury is an important mechanism that serves to protect living beings from harm. However, persistent pain remaining long after the injury has healed serves no useful purpose and is a disabling condition. Persistent postsurgical pain, which is pain that lasts more than 3 months after surgery, affects 10-50% of patients undergoing elective surgery. Many of these patients are affected by neuropathic pain which is characterised as a pain caused by lesion or disease in the somatosensory nervous system. When established, this type of pain is difficult to treat and new approaches for prevention and treatment are needed. A possible contributing mechanism for the transition from acute physiological pain to persistent pain involves low-grade inflammation in the central nervous system (CNS), glial dysfunction and subsequently an imbalance in the neuron-glial interaction that causes enhanced and prolonged pain transmission. ⋯ Larger studies in clinical settings are needed before these findings can be applied in a clinical context. Potentially, by targeting inflammatory activated glial cells and not only neurons, a new arena for development of pharmacological agents for persistent pain is opened.