Articles: neuropathic-pain.
-
Chronic pain associated with traumatic spinal cord injury (SCI) can be quite challenging to the physiatrist. This highly prevalent condition within the SCI population requires an appropriate evaluative approach including a thorough history, a targeted physical examination, and appropriate use of diagnostic testing. ⋯ A multitude of management approaches exist including nonpharmacologic, pharmacologic, and interventional approaches. This article provides an overview of the epidemiology, classification, evaluation, and management of SCI-associated pain.
-
Randomized Controlled Trial
Sensory correlates of pain in peripheral neuropathies.
To characterize sensory threshold alterations in peripheral neuropathies and the relationship between these alterations and the presence of pain. ⋯ There is a complex relationship between the loss or functional deficit of large and especially small sensory nerve fibers and the development of pain in peripheral neuropathy.
-
The blood-nerve barrier (BNB) is a selectively permeable barrier that creates an immunologically and biochemically privileged space for peripheral axons and supporting cells. The breakdown of the BNB allows access of blood-borne (hematogenous) cells and molecules to the endoneurium to engage in the local inflammatory cascade. This process was examined in a mouse model of trauma-associated neuropathic pain. ⋯ These results demonstrate that blood-borne molecules may play a role in the generation of neuropathic pain, suggesting that pain may be driven from infection or injury, at a distance from the nervous system. Furthermore, the breakdown of the BNB in neuropathic conditions was exploited to permit the entry of analgesic molecules that typically cannot pass the BNB, such as ProToxin-II, a BNB-impermeable Nav1.7 inhibitor. Therapeutics utilizing this mechanism could have selective access to injured nerves over healthy tissues.
-
Therapeutic use of general sodium channel blockers, such as lidocaine, can substantially reduce the enhanced activity in sensory neurons that accompanies chronic pain after nerve or tissue injury. However, because these general blockers have significant side effects, there is great interest in developing inhibitors that specifically target subtypes of sodium channels. Moreover, some idiopathic small-fiber neuropathies are driven by gain-of-function mutations in specific sodium channel subtypes. ⋯ Moreover, mechanical stimuli initiated bursts of action potential firing in specific subpopulations that continued for minutes after removal of the force and were not susceptible to conduction failure. Surprisingly, despite the intense afferent firing, the behavioral effects of the Nav1.8 mutation were quite modest, as only frankly noxious stimuli elicited enhanced pain behavior. These data demonstrate that a Nav1.8 gain-of-function point mutation contributes to intense hyperexcitability along the afferent axon within distinct sensory neuron subtypes.
-
Mol. Cell. Neurosci. · May 2014
Over-expression of astrocytic ET-1 attenuates neuropathic pain by inhibition of ERK1/2 and Akt(s) via activation of ETA receptor.
A differential role of endothelin-1 (ET-1) in pain processing has recently been suggested. However, the function of central ET-1 in neuropathic pain (NP) has not been fully elucidated to date. We report here the action of endogenous central ET-1 in sciatic nerve ligation-induced NP (SNL-NP) in a transgenic animal model that over-expresses ET-1 in the astrocytes (GET-1 mice). ⋯ The effects of BQ-123 on the mRNA expression of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and protein kinase B/serine protein kinase (Akt(s)) were assessed in the ipsilateral L4-L6 segments harvested 30min after BQ-123 administration on day 7 after surgery. Phosphorylation of ERK1/2 and Akt(s) in the ipsilateral spinal cord of GET-1 mice was reduced following SNL, whereas no reduction was observed after intrathecal injection of BQ-123. In conclusion, our results showed that the xover-expression of astrocytic ET-1 reduced SNL-induced allodynia and hyperalgesia by inhibiting the activation of ERK1/2 and Akt(s) via the ETA-R-mediated pathway.