Articles: neuropathic-pain.
-
Oxaliplatin, unlike other platinum anticancer agents, has only mild toxic effects on the hematopoietic, urinary and gastrointestinal systems. Its dose-limiting side effect is neurotoxicity that may evolve to a neuropathic syndrome which is difficult to treat. In this study we treated rats with oxaliplatin (2.4 mg/kg/day intraperitoneally, for 3 weeks), and observed that expression levels of the α7 nicotinic acetylcholine receptor (nAChR) subunit were dramatically decreased both in the peripheral and central nervous system. ⋯ Astrocyte density was enhanced by the agonist treatment in the spinal cord, thalamus and somatosensory area 1 as opposed to the effects of oxaliplatin treatment. (R)-ICH3 and PNU-282987 per se increased glial cell number in a region-specific manner. In summary, α7 nAChR is involved in oxaliplatin-dependent neuropathology and the agonists (R)-ICH3 and PNU-282987 reduce pain and protect nervous tissue with concomitant glial activation. Since glial cells play a role both in pain and in neuroprotection, an α7 AChR-dependent modulation of glial functions is suggested to distinguish rescue signals from the pathological pain-mediating pathway.
-
Semin. Arthritis Rheum. · Apr 2014
History of knee surgery is associated with higher prevalence of neuropathic pain-like symptoms in patients with severe osteoarthritis of the knee.
Neuropathic pain (NP) mechanisms contribute to the pain experience in osteoarthritis (OA). We aimed to characterise the factors that contribute to NP-like symptoms in knee OA patients. ⋯ NP-like symptoms are highly prevalent in patients with clinically severe painful OA and are a significant contributor to decreased quality of life and higher pain intensity. The cross-sectional association with previous history of knee surgery suggests that some of the NP-like symptoms may result from nerve damage.
-
To establish a rat model of type II diabetic neuropathic pain. ⋯ A rat model of type II diabetic neuropathic pain can be established by feeding rats a high-fat, high-sugar diet for 8 weeks, in combination with intraperitoneal injection of 35 mg/kg STZ. This model can be stably maintained for at least 2 weeks.
-
Comparative Study
Efficacy of kilohertz-frequency and conventional spinal cord stimulation in rat models of different pain conditions.
The aim was to compare the effects of high-frequency spinal cord stimulation (HF-SCS) at subparesthetic intensity with conventional SCS in rat models of different types of pain. In addition, microrecordings of afferent activity in the dorsal columns during both types of SCS were performed to elucidate their mode of action. ⋯ Conventional SCS proved equally effective to HF-SCS in various pain models. As no activity is conveyed rostrally in subparesthetic HF-SCS, we hypothesize that its mechanisms of action are primarily segmental.
-
Background and purpose Conventional neurophysiological techniques do not assess the function of nociceptive pathways and are inadequate to detect abnormalities in patients with small-fiber damage. This overview aims to give an update on the methods and techniques used to assess small fiber (Aδ- and C-fibers) function using evoked potentials in research and clinical settings. Methods Noxious radiant or contact heat allows the recording of heat-evoked brain potentials commonly referred to as laser evoked potentials (LEPs) and contact heat-evoked potentials (CHEPs). ⋯ Recent studies suggest that both CHEPs and pinprick-evoked potentials may also be convenient tools to assess sensitization of the nociceptive system. Conclusions In future studies, small-fiber evoked potentials may also be used in studies that aim to understand pain mechanisms including different neuropathic pain phenotypes, such as cold- or touch-evoked allodynia, and to identify predictors of response to pharmacological pain treatment. Implications Future studies are needed for some of the newly developed methods.