Articles: neuropathic-pain.
-
Sinomenine is an alkaloid originally isolated from the root of the plant Sinomenium acutum. It is used in traditional medicine in China to treat rheumatic arthritis. In the present study, we evaluated the potential antinociceptive effects of sinomenine in rodents with nociceptive, inflammatory and neuropathic pain. ⋯ Finally, sinomenine effectively alleviated mechanical and cold allodynia in rats and mice after injury to peripheral nerve or spinal cord. The analgesic effect of sinomenine is not associated with side effects and is not reversed by the opioid receptor antagonist naloxone. Our results showed that sinomenine has a wide spectrum analgesic effect in rodent models of nociceptive, inflammatory and neuropathic pain.
-
Neuropathic pain is one of the major problems of patients with spinal cord injury (SCI), which remains refractory to treatment despite a variety of therapeutic approach. Multimodal neuroimaging could provide complementary information for brain mechanisms underlying neuropathic pain, which could be based on development of more effective treatment strategies. Ten patients suffering from chronic neuropathic pain after SCI and 10 healthy controls underwent FDG-PET, T1-anatomical MRI and diffusion tensor imaging. ⋯ These results indicated that white matter changes imply abnormal pain modulation in patients as well as motor impairment. Our study showed the functional and structural multimodal imaging modality commonly identified the possible abnormalities in the brain regions participating pain modulation in neuropathic pain. Multifaceted imaging studies in neuropathic pain could be useful elucidating precise mechanisms of persistent pain, and providing future directions for treatment.
-
Individuals with spinal cord injury (SCI) often have chronic pain, which may have a major impact on their quality of life. The purpose of this article is to present an update on the classification of SCI pain, recent advances in the understanding of underlying mechanisms, and current evidence-based treatment of SCI pain. ⋯ We need to improve preclinical assessment of pain-like behavior in central pain models, and improve the clinical assessment of pain and our understanding of the interaction with cognitive, emotional, and social factors. In future studies on mechanisms and treatment, we need to acknowledge the different phenotypes of chronic SCI pain.
-
We conducted a postal survey to assess the prevalence and characteristics of neuropathic pain and migraine in a cohort of multiple sclerosis (MS) patients. Of the 1300 questionnaires sent, 673 could be used for statistical analysis. Among the respondents, the overall pain prevalence in the previous month was 79%, with 51% experiencing pain with neuropathic characteristics (NCs) and 46% migraine. ⋯ Migraine, but not NC pain, was associated with age, disease duration, relapsing-remitting course, and interferon-beta treatment. This suggests that NC pain and migraine are mediated by different mechanisms. Therefore, pain mechanisms that specifically operate in MS patients need to be characterized to design optimal treatments for these individuals.
-
P2X3 receptors are present in the spinal dorsal horn (SDH) and play an essential role in the regulation of nociception and pain. Pregabalin (PGB) has been used as a new antiepileptic drug in the treatment of neuropathic pain. However, it is unclear whether PGB-induced analgesia was associated with the P2X3 receptor in SDH. ⋯ Simultaneously, CCD rats showed higher P2X3 mRNA and protein expression in ipsilateral side of the SDH than the sham operation rats. However, the MWT was increased and expression of P2X3 mRNA and protein in the ipsilateral SDH in CCD rats was decreased 3 days after PGB treatment. Thus, PGB may partially reverse mechanical hyperalgesia in CCD rats by inhibiting P2X3 receptor expression in the ipsilateral SDH.