Articles: neuropathic-pain.
-
Anesthesia and analgesia · Dec 2023
Phosphate NIMA-Related Kinase 2-Dependent Epigenetic Pathways in Dorsal Root Ganglion Neurons Mediates Paclitaxel-Induced Neuropathic Pain.
The microtubule-stabilizing drug paclitaxel (PTX) is an important chemotherapeutic agent for cancer treatment and causes peripheral neuropathy as a common side effect that substantially impacts the functional status and quality of life of patients. The mechanistic role for NIMA-related kinase 2 (NEK2) in the progression of PTX-induced neuropathic pain has not been established. ⋯ pRSK2/JMJD3/H3K27me3/TRPV1 signaling in the DRG neurons plays as a key regulator for PTX therapeutic approaches.
-
Scrambler therapy (ST) is a noninvasive method of transcutaneous neuromodulation that has 510(K) clearance from the United States Food and Drug Administration for treating acute pain, postoperative pain, and intractable chronic pain. Since its inception, ST has been used to treat many chronic pain syndromes in a variety of patient populations. We synthesized the available literature for ST to delineate its overall evidence basis. ⋯ ST is regarded as a safe intervention with potential for significant analgesic benefit for neuropathic pain conditions. Although the available evidence is most robust for treating chemotherapy-induced peripheral neuropathy, ST has also been shown to be effective in treating other neuropathic pain syndromes. Evidence for ST use in nociceptive pain conditions is limited but appears promising. The favorable safety profile and increasing evidence basis for ST warrant more extensive recognition and consideration for use in clinical care.
-
Although peripheral neuropathic pain is caused by peripheral nerve injury, it is not simply a peripheral nervous system disease. It causes abnormalities in both the central and peripheral nervous systems. Pathological phenomena, such as hyperactivation of sensory neurons and inflammation, are observed in both the dorsal root ganglion and spinal cord. ⋯ Collectively, these findings demonstrated that KLS-2031 efficiently suppressed pathological pain signals and inflammation in the SC of peripheral NP model, and is a potential novel therapeutic approach for NP in clinical settings. PERSPECTIVE: Our study demonstrated that KLS-2031, a combination gene therapy delivered by transforaminal epidural injection, not only mitigates neuroinflammation but also improves SC neurophysiological function, including excitatory-inhibitory balance. These findings support the potential of KLS-2031 as a novel modality that targets multiple aspects of the complex pathophysiology of neuropathic pain.
-
We have previously shown that intradermal injection of high-molecular-weight hyaluronan (500-1200 kDa) produces localized antihyperalgesia in preclinical models of inflammatory and neuropathic pain. In the present experiments, we studied the therapeutic effect of topical hyaluronan, when combined with each of 3 transdermal drug delivery enhancers (dimethyl sulfoxide [DMSO], protamine or terpene), in preclinical models of inflammatory and neuropathic pain. Topical application of 500 to 1200 kDa hyaluronan (the molecular weight range used in our previous studies employing intradermal administration), dissolved in 75% DMSO in saline, markedly reduced prostaglandin E 2 (PGE 2 ) hyperalgesia, in male and female rats. ⋯ The topical administration of a combination of hyaluronan with 2 other transdermal drug delivery enhancers, protamine and terpene, also attenuated CIPN hyperalgesia, an effect that was more prolonged than with DMSO vehicle. Repeated administration of topical hyaluronan prolonged the duration of antihyperalgesia. Our results support the use of topical hyaluronan, combined with chemically diverse nontoxic skin penetration enhancers, to induce marked antihyperalgesia in preclinical models of inflammatory and neuropathic pain.
-
Patients who suffer from long-term, neuropathic pain that proves refractory to conventional medical management are high consumers of health care resources and experience poorer physical and mental health than people with other forms of pain. Pharmacologic treatments have adverse effects; nonpharmacologic interventions have limitations. Spinal cord stimulation (SCS) is an effective treatment for neuropathic pain, although 30% to 40% of patients fail to achieve acceptable levels of pain relief. There are currently no objective methods to predict the success of SCS to treat neuropathic pain, and therefore, it is important to understand which patient factors may be predictive of a lack of response to SCS, to inform future patient treatment options. This study proposes a protocol for a systematic review and meta-analysis of published studies to examine these predictive factors. ⋯ This study seeks to provide a contemporary review of patient predictors of success of neuromodulation for neuropathic pain. We anticipate that findings may guide the use of neuromodulation in patient subgroups and the design and reporting of future clinical studies in this field.