Articles: human.
-
Mechanical ventilation is a life-saving intervention for patients with respiratory failure or during deep sedation. During continuous mandatory ventilation the diaphragm remains inactive, which activates pathophysiological cascades leading to a loss of contractile force and muscle mass (collectively referred to as ventilator-induced diaphragm dysfunction, VIDD). In contrast to peripheral skeletal muscles this process is rapid and develops after as little as 12 h and has a profound influence on weaning patients from mechanical ventilation as well as increased incidences of morbidity and mortality. ⋯ Levosimendan has also been proven to increase diaphragm contractile forces in humans which may prove to be helpful for patients experiencing difficult weaning. Additionally, antioxidant drugs that scavenge reactive oxygen species have been demonstrated to protect the diaphragm from VIDD in several animal studies. The translation of these drugs into the IUC setting might protect patients from VIDD and facilitate the weaning process.
-
Understanding the neural basis of consciousness is fundamental to neuroscience research. Disruptions in cortico-cortical connectivity have been suggested as a primary mechanism of unconsciousness. By using a novel combination of positron emission tomography and functional magnetic resonance imaging, we studied anesthesia-induced unconsciousness and recovery using the α₂-agonist dexmedetomidine. ⋯ However, DMN thalamo-cortical functional connectivity was disrupted. Recovery from this state was associated with sustained reduction in cerebral blood flow and restored DMN thalamo-cortical functional connectivity. We report that loss of thalamo-cortical functional connectivity is sufficient to produce unconsciousness.
-
Reactive gliosis and glial scar formation have been evidenced in the animal model of ischemic stroke, but not in human ischemic brain. Here, we have found that GFAP, ED1 and chondroitin sulphate proteoglycans (CSPG) expression were significantly increased in the cortical peri-infarct regions after ischemic stroke, compared with adjacent normal tissues and control subjects. Double immunolabeling showed that GFAP-positive reactive astrocytes in the peri-infarct region expressed CSPG, but showed no overlap with ED1-positive activated microglia. Our findings suggest that reactive gliosis and glial scar formation as seen in animal models of stroke are reflective of what occurs in the human brain after an ischemic injury.
-
Evid Based Compl Alt · Jan 2014
Electroacupuncture reduces hyperalgesia after injections of acidic saline in rats.
Background. Injections of acidic saline into the gastrocnemius muscle in rats produce a bilateral long-lasting hyperalgesia similar to fibromyalgia in humans. No previous study investigated the effect of electroacupuncture (EA) on this acidic saline model. ⋯ Moreover, mechanical and thermal hyperalgesia were significantly reversed by EA 15, 100 Hz, and acupuncture. Conclusions. The results suggest that EA high and low frequency as well as acupuncture are effective in reducing hyperalgesia in chronic muscle pain model.
-
Observational Study
Increased plasma levels of endozepines, endogenous ligands of benzodiazepine receptors, during systemic inflammation: a prospective observational study.
Recent work has shown that benzodiazepines interact with the immune system and exhibit anti-inflammatory effects. By using in vitro models, researchers in several studies have shown that the peptidergic endogenous ligands of benzodiazepine receptors, named endozepines, are involved in the immune response. All endozepines identified so far derive from diazepam-binding inhibitor (DBI), which generates several biologically active fragments. The aim of the present study was to measure plasma levels of DBI-like immunoreactivity (DBI-LI) in a rat model of sepsis and in patients with systemic inflammation from septic or non-septic origin. ⋯ Endozepines might be involved in the inflammatory response in patients with systemic inflammation.