Articles: human.
-
Front Neuroendocrinol · Oct 2013
ReviewSex differences and hormonal modulation of deep tissue pain.
Women disproportionately suffer from many deep tissue pain conditions. Experimental studies show that women have lower pain thresholds, higher pain ratings and less tolerance to a range of painful stimuli. ⋯ Gonadal hormones modulate responses in primary afferents, dorsal horn neurons and supraspinal sites, but the direction of modulation is variable. This review will examine sex differences in deep tissue pain in humans and animals focusing on the role of gonadal hormones (mainly estradiol) as an underlying component of the modulation of pain sensitivity.
-
When viewing the needle of a syringe approaching your skin, anticipation of a painful prick may lead to increased arousal. How this anticipation is reflected in neural oscillatory activity and how it relates to activity within the autonomic nervous system is thus far unknown. Recently, we found that viewing needle pricks compared with Q-tip touches increases the pupil dilation response (PDR) and perceived unpleasantness of electrical stimuli. ⋯ Source reconstruction using linear beamforming revealed reduced alpha-band activity in the posterior cingulate cortex (PCC) and fusiform gyrus before the onset of electrical stimuli when participants viewed needle pricks compared with Q-tip touches. Moreover, alpha-band activity in the PCC predicted PDR on a single trial level. The anticipatory reduction of alpha-band activity in the PCC may reflect a neural mechanism that serves to protect the body from forthcoming harm by facilitating the preparation of adequate defense responses.
-
It is now established that IL-17 has a broad pro-inflammatory potential in mammalian host defense, in inflammatory disease and in autoimmunity, whereas little is known about its anti-inflammatory potential and inhibitory feedback mechanisms. Here, we examined whether IL-17A can inhibit the extracellular release of IL-23 protein, the upstream regulator of IL-17A producing lymphocyte subsets, that is released from macrophages during pulmonary inflammation. We characterized the effect of IL-17A on IL-23 release in several models of pulmonary inflammation, evaluated the presence of IL-17 receptor A (RA) and C (RC) on human alveolar macrophages and assessed the role of the Rho family GTPase Rac1 as a mediator of the effect of IL-17A on the release of IL-23 protein. ⋯ We detected IL-17RA and IL-17RC on human alveolar macrophages, and found that in vitro stimulation of these cells with IL-17A protein, after exposure to LPS, decreased IL-23 protein in conditioned medium, but not IL-23 p19 or p40 mRNA. This study indicates that IL-17A can partially inhibit the release of IL-23 protein during pulmonary inflammation, presumably by stimulating the here demonstrated receptor units IL-17RA and IL-17RC on alveolar macrophages. Hypothetically, the demonstrated mechanism may serve as negative feedback to protect from excessive IL-17A signaling and to control antibacterial host defense once it is activated.
-
Randomized Controlled Trial
Hypnotic susceptibility modulates brain activity related to experimental placebo analgesia.
Identifying personality traits and neural signatures that predict placebo responsiveness is important, both on theoretical and practical grounds. In the present functional magnetic resonance imaging (fMRI) study, we performed multiple-regression interaction analysis to investigate whether hypnotic susceptibility (HS), a cognitive trait referring to the responsiveness to suggestions, explains interindividual differences in the neural mechanisms related to conditioned placebo analgesia in healthy volunteers. HS was not related to the overall strength of placebo analgesia. ⋯ During pain perception, activity in the regions reflecting attention/arousal (bilateral anterior thalamus/left caudate) and self-related processing (left precuneus and bilateral posterior temporal foci) was negatively related to the strength of the analgesic placebo response in subjects with higher HS, but not in subjects with lower HS. These findings highlight HS influences on brain circuits related to the placebo analgesic effects. More generally, they demonstrate that different neural mechanisms can be involved in placebo responsiveness, depending on individual cognitive traits.