Articles: chronic-pain.
-
Neuroscience letters · Jun 2012
ReviewThe use of functional neuroimaging to evaluate psychological and other non-pharmacological treatments for clinical pain.
A large number of studies have provided evidence for the efficacy of psychological and other non-pharmacological interventions in the treatment of chronic pain. While these methods are increasingly used to treat pain, remarkably few studies focused on the exploration of their neural correlates. The aim of this article was to review the findings from neuroimaging studies that evaluated the neural response to distraction-based techniques, cognitive behavioral therapy (CBT), clinical hypnosis, mental imagery, physical therapy/exercise, biofeedback, and mirror therapy. ⋯ There was also evidence for decreased pain-related activations in afferent pain regions and limbic structures. If future studies will address the technical and methodological challenges of today's experiments, neuroimaging might have the potential of segregating the neural mechanisms of different treatment interventions and elucidate predictive and mediating factors for successful treatment outcomes. Evaluations of treatment-related brain changes (functional and structural) might also allow for sub-grouping of patients and help to develop individualized treatments.
-
Neuroscience letters · Jun 2012
ReviewImaging central neurochemical alterations in chronic pain with proton magnetic resonance spectroscopy.
Proton magnetic resonance spectroscopy has been used extensively in the study of various neurobiological disorders: depression, schizophrenia, autism, etc. But its application to chronic pain is relatively new. Not many studies in chronic pain have used (1)H-MRS. ⋯ The combination of (1)H-MRS imaging with pharmacologic interventions holds significant promise as a direct one-to-one matching of disease pathology with drug mechanism of action can be made. As such (1)H-MRS may be useful in discovery of novel compounds for chronic pain. Research in these areas may lead to improved diagnosis and treatment of these complex patients.
-
Neuroscience letters · Jun 2012
ReviewCerebral interactions of pain and reward and their relevance for chronic pain.
Pain and reward are opponent, interacting processes. Such interactions are enabled by neuroanatomical and neurochemical overlaps of brain systems that process pain and reward. Cerebral processing of hedonic ('liking') and motivational ('wanting') aspects of reward can be separated: the orbitofrontal cortex and opioids play an important role for the hedonic experience, and the ventral striatum and dopamine predominantly process motivation for reward. ⋯ Further, reward, including pain relief, leads to operant learning, which can affect pain sensitivity. Indirect evidence points at brain mechanisms that might underlie pain relief as a reward and related operant learning but studies are scarce. Investigating the cerebral systems underlying pain-reward interactions as well as related operant learning holds the potential of better understanding mechanisms that contribute to the development and maintenance of chronic pain, as detailed in the last section of this review.
-
We briefly summarize recent advances regarding brain functional representation of chronic pain, reorganization of resting state brain activity, and of brain anatomy with chronic pain. Based on these observations and recent theoretical advances regarding network architecture properties, we develop a general concept of the dynamic interplay between anatomy and function as the brain progresses into persistent pain, and outline the role of mesolimbic learning mechanisms that are likely involved in maintenance of chronic pain.