Articles: neuralgia.
-
Neurol Neurochir Pol · Sep 2018
Ganglion Impar block improves neuropathic pain in coccygodynia: A preliminary report.
To define the effectiveness of ganglion Impar block in improving neuropathic pain. ⋯ Ganglion Impar block is effective in decreasing the neuropathic component of chronic coccygodynia. This improves painless sitting in patients but its reflections on quality of life is not clear.
-
CD137L (4-1BBL) is a costimulatory molecule whose signaling can promote monocyte/macrophage functions; however, CD137L-mediated microglial response and its role in neuropathic pain remain unknown. We investigated CD137L following peripheral nerve injury-induced neuropathic pain using a spinal nerve L5 transection (L5Tx) murine model in both sexes. First, C57BL/6_CD137L knock-out (KO) mice displayed decreased mechanical and diminished heat hypersensitivity compared to wild-type (WT) controls, beginning on day 3 to up to day 35 post-L5Tx. ⋯ Following L5Tx, female CD137L KO mice did not show increased iNOS mRNA and had reduced numbers of IL-1β+ cells compared to WT. At 21 d post-surgery, CD137L KO mice had higher total numbers of arginase (Arg)-1+ cells and Arg-1+ microglia. Altogether, results indicate that spinal cord CD137L contributes to the development of peripheral nerve injury-induced neuropathic pain, which may be in part mediated through CD137L's modulation of the pro- and anti-inflammatory balance within the spinal cord.
-
Neuropathic pain affects multiple brain functions, including motivational processing. However, little is known about the structural and functional brain changes involved in the transition from an acute to a chronic pain state. Here we combined behavioral phenotyping of pain thresholds with multimodal neuroimaging to longitudinally monitor changes in brain metabolism, structure and connectivity using the spared nerve injury (SNI) mouse model of chronic neuropathic pain. ⋯ Similarly, all global and local network changes that occurred following pain induction disappeared over time, with two notable exceptions: the nucleus accumbens, which played a more dominant role in the global network in a chronic pain state and the prefrontal cortex and hippocampus, which showed lower connectivity. These changes in connectivity were accompanied by enhanced glutamate levels in the hippocampus, but not in the prefrontal cortex. We suggest that hippocampal hyperexcitability may contribute to alterations in synaptic plasticity within the nucleus accumbens, and to pain chronification.
-
Molecular neurobiology · Sep 2018
Rosmarinic Acid Mitigates Mitochondrial Dysfunction and Spinal Glial Activation in Oxaliplatin-induced Peripheral Neuropathy.
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting complication which develops as a consequence of treatment with chemotherapeutic agents like oxaliplatin and is a mainstay of therapy for colorectal cancer. Ever since CIPN was identified, understanding its exact pathomechanisms remains a clinical challenge. The role of mitochondrial dysfunction and glial cell activation has surfaced in the etiology of CIPN. ⋯ In vitro screening also revealed that RA did not compromise the anti-cancer activity of oxaliplatin in colon cancer cells (HT-29). Taken together, the above results demonstrate the therapeutic activity of RA against the oxaliplatin-induced mitochondrial dysfunction and neuroinflammation and thus, suggest its potential for the management of OIPN. Graphical Abstract Schematic representation of neuroprotective mechanisms of rosmarinic acid via AMPK activation in oxaliplatin-evoked peripheral neuropathy.