Articles: neuralgia.
-
Animal models suggest that chemokines are important mediators in the pathophysiology of neuropathic pain. Indeed, these substances have been called "gliotransmitters," a term that illustrates the close interplay between glial cells and neurons in the context of neuroinflammation and pain. However, evidence in humans is scarce. ⋯ These 6 proteins were also major results in a recent similar study in patients with fibromyalgia. The findings need to be confirmed in larger cohorts, and the question of causality remains to be settled. Because it has been suggested that prevalent comorbidities to chronic pain (eg, depression, anxiety, poor sleep, and tiredness) also are associated with neuroinflammation, it will be important to determine whether neuroinflammation is a common mediator.
-
Different sensory profiles in diabetic distal symmetrical sensory-motor polyneuropathy (DSPN) may be associated with pain and the responsiveness to analgesia. We aimed to characterize sensory phenotypes of patients with painful and painless diabetic neuropathy and to assess demographic, clinical, metabolic, and electrophysiological parameters related to the presence of neuropathic pain in a large cohort of well-defined DSPN subjects. This observational cross-sectional multi-center cohort study (performed as part of the ncRNAPain EU consortium) of 232 subjects with nonpainful (n = 74) and painful (n = 158) DSPN associated with diabetes mellitus of type 1 and 2 (median age 63 years, range 21-87 years; 92 women) comprised detailed history taking, laboratory tests, neurological examination, quantitative sensory testing, nerve conduction studies, and neuropathy severity scores. ⋯ Neuropathic pain was further linked to female sex and higher cognitive appraisal of pain as assessed by the pain catastrophizing scale (P < 0.001), while parameters related to diabetes showed no influence on neuropathic pain with the exception of laboratory signs of nephropathy. This study confirms the value of comprehensive DSPN phenotyping and underlines the importance of the severity of neuropathy for the presence of pain. Different sensory phenotypes might be useful for stratification of patients with painful DSPN for analgesic treatment and drug trials.
-
Anesthesia and analgesia · Dec 2017
Antiallodynic Effects of Endomorphin-1 and Endomorphin-2 in the Spared Nerve Injury Model of Neuropathic Pain in Mice.
The spared nerve injury (SNI) model is a new animal model that can mimic several characteristics of clinical neuropathic pain. Opioids are recommended as treatment of neuropathic pain. Therefore, the present study was conducted to investigate the antinociceptive effects of endomorphin-1 (EM-1) and endomorphin-2 (EM-2) given centrally and peripherally in the SNI model of neuropathic pain in mice. ⋯ The present investigation demonstrated that both EM-1 and EM-2 given centrally and peripherally produced potent antiallodynic activities in SNI mice, and differential opioid mechanisms were involved.
-
Despite their huge epidemiological impact, primary headaches, trigeminal neuralgia and other chronic pain conditions still receive suboptimal medical approach, even in developed countries. The limited efficacy of current pain-killers and prophylactic treatments stands among the main reasons for this phenomenon. Botulinum neurotoxin (BoNT) represents a well-established and licensed treatment for chronic migraine, but also an emerging treatment for other types of primary headache, trigeminal neuralgia, neuropathic pain, and an increasing number of pain conditions. ⋯ BoNT is an emerging treatment in different pain conditions. Future RCTs should explore the use of BoNT injection therapy combined with systemic drugs and/or physical therapies as new pain treatment strategies.
-
Chemotherapy-induced neuropathic pain is a distressing and commonly occurring side effect of many commonly used chemotherapeutic agents, which in some cases may prevent cancer patients from being able to complete their treatment. Cannabinoid based therapies have the potential to manage or even prevent pain associated with this syndrome. Pre-clinical animal studies that investigate the modulation of the endocannabinoid system (endogenous cannabinoid pathway) are being conducted to better understand the mechanisms behind this phenomenon. ⋯ In addition, their results suggest that anti-allodynic effects may also be mediated by additional receptors, including TRPV1 and 5-hydroxytryptamine (5-HT1A). Pre-clinical studies demon-strate that the activation of endocannabinoid CB-1 or CB-2 receptors produces physiological effects in animal models, namely the reduction of chemotherapy-induced allodynia. These studies also provide in-sight into the biological mechanism behind the therapeutic utility of cannabis compounds in managing chemotherapy-induced neuropathic pain, and provide a basis for the conduct of future clinical studies in patients of this population.