Articles: neuralgia.
-
Randomized Controlled Trial
An Exploratory Human Laboratory Experiment Evaluating Vaporized Cannabis in the Treatment of Neuropathic Pain from Spinal Cord Injury and Disease.
Using 8-hour human laboratory experiments, we evaluated the analgesic efficacy of vaporized cannabis in patients with neuropathic pain related to injury or disease of the spinal cord, most of whom were experiencing pain despite traditional treatment. After obtaining baseline data, 42 participants underwent a standardized procedure for inhaling 4 puffs of vaporized cannabis containing either placebo, 2.9%, or 6.7% delta 9-THC on 3 separate occasions. A second dosing occurred 3 hours later; participants chose to inhale 4 to 8 puffs. This flexible dosing was used to attempt to reduce the placebo effect. Using an 11-point numerical pain intensity rating scale as the primary outcome, a mixed effects linear regression model showed a significant analgesic response for vaporized cannabis. When subjective and psychoactive side effects (eg, good drug effect, feeling high, etc) were added as covariates to the model, the reduction in pain intensity remained significant above and beyond any effect of these measures (all P < .0004). Psychoactive and subjective effects were dose-dependent. Measurement of neuropsychological performance proved challenging because of various disabilities in the population studied. Because the 2 active doses did not significantly differ from each other in terms of analgesic potency, the lower dose appears to offer the best risk-benefit ratio in patients with neuropathic pain associated with injury or disease of the spinal cord. ⋯ A crossover, randomized, placebo-controlled human laboratory experiment involving administration of vaporized cannabis was performed in patients with neuropathic pain related to spinal cord injury and disease. This study supports consideration of future research that would include longer duration studies over weeks to months to evaluate the efficacy of medicinal cannabis in patients with central neuropathic pain.
-
Exercise is known to exert a systemic anti-inflammatory influence, but whether its effects are sufficient to protect against subsequent neuropathic pain is underinvestigated. We report that 6 weeks of voluntary wheel running terminating before chronic constriction injury (CCI) prevented the full development of allodynia for the ∼3-month duration of the injury. Neuroimmune signaling was assessed at 3 and 14 days after CCI. ⋯ Last, unrestricted voluntary wheel running, beginning either the day of, or 2 weeks after, CCI, progressively reversed neuropathic pain. This study is the first to investigate the behavioral and neuroimmune consequences of regular exercise terminating before nerve injury. This study suggests that chronic pain should be considered a component of "the diseasome of physical inactivity," and that an active lifestyle may prevent neuropathic pain.
-
Expert Opin Pharmacother · Sep 2016
Randomized Controlled Trial Comparative StudyEvaluation of the antihyperalgesic effect of tapentadol in two human evoked pain models - the TapCapMentho pilot trial.
Tapentadol is effective in the treatment of neuropathic and nociceptive pain and in acute and chronic pain conditions; two mechanisms combining opioid µ-receptor agonism and noradrenergic reuptake inhibition underlie its analgesic effect. ⋯ The discrepancy between pain models using healthy volunteers and drug trials under real acute and chronic pain conditions in patients as well as methodological aspects may have contributed to this result. The impact of these findings questions the general use of pain models as predictors for early decision making during drug development. The study was registered in ClinicalTrials.gov (NCT01615510).
-
J. Pharmacol. Exp. Ther. · Sep 2016
Selective Cathepsin S Inhibition with MIV-247 Attenuates Mechanical Allodynia and Enhances the Antiallodynic Effects of Gabapentin and Pregabalin in a Mouse Model of Neuropathic Pain.
Cathepsin S inhibitors attenuate mechanical allodynia in preclinical neuropathic pain models. The current study evaluated the effects when combining the selective cathepsin S inhibitor MIV-247 with gabapentin or pregabalin in a mouse model of neuropathic pain. Mice were rendered neuropathic by partial sciatic nerve ligation. ⋯ A subeffective dose of MIV-247 (50 µmol/kg) in combination with a subeffective dose of pregabalin (38 µmol/kg) or gabapentin (73 µmol/kg) also resulted in substantial efficacy. Plasma levels of MIV-247, gabapentin, and pregabalin were similar when given in combination as to when given alone. Cathepsin S inhibition with MIV-247 exerts significant antiallodynic efficacy alone, and also enhances the effect of gabapentin and pregabalin without increasing side effects or inducing pharmacokinetic interactions.
-
Chronic neuropathic groin pain is a sequela of hernia surgery that occurs at unacceptably high rates, causing widespread impacts on quality of life. Although the medical community is beginning to recognize the role of surgical technique in the initiation and maintenance of postherniorrhaphy neuropathic pain, little information exists regarding pain management strategies for this condition. This review presents a summary of the pain condition state, its treatment options, and treatment recommendations. ⋯ An unmet need may still exist with these options, however, leaving a role for neuromodulation for the treatment of intractable cases. A pain management algorithm for iterative interventions including stimulation of the dorsal root ganglion (DRG) is described. It is expected that cross-disciplinary awareness of surgeons for nonsurgical pain management options in the treatment of chronic neuropathic postherniorrhaphy pain will contribute to better clinical outcomes.