Articles: hyperalgesia.
-
Liver X receptors, including α and β isoforms, are ligand-activated transcription factors. Whether liver X receptor α plays a role in neuropathic pain is unknown. ⋯ Activation of liver X receptor α inhibits mechanical allodynia by inhibiting the activation of glial cells and rebalancing cytokines in the spinal dorsal horn via neurosteroids.
-
Vincristine (VNC) is commonly used to treat pediatric cancers, including the most prevalent childhood malignancy, acute lymphoblastic leukemia. Although clinical evidence suggests that VNC causes peripheral neuropathy in children, the degree to which pediatric chemotherapeutic regimens influence pain sensitivity throughout life remains unclear, in part because of the lack of an established animal model of chemotherapy-induced neuropathic pain during early life. Therefore, this study investigated the effects of VNC exposure between postnatal days (P) 11 and 21 on mechanical and thermal pain sensitivity in the developing rat. ⋯ Gross and fine motor function appeared normal after VNC treatment, although a small decrease in weight gain was observed. The VNC regimen also produced a significant decrease in intraepidermal nerve fiber density in the hind paw skin by P33. Overall, the present results demonstrate that high-dose administration of VNC during the early postnatal period selectively evokes a mechanical hypersensitivity that is slow to emerge during adolescence, providing further evidence that aberrant sensory input during early life can have prolonged consequences for pain processing.
-
Cold hyperalgesia has been established as an important marker of pain severity in a number of conditions. This study aimed to establish the extent to which patients with knee osteoarthritis (OA) demonstrate widespread cold, heat, and pressure hyperalgesia. OA participants with widespread cold hyperalgesia were compared with the remaining OA cohort to determine whether they could be distinguished in terms of hyperalgesia, pain report, pain quality, and physical function. ⋯ This study identified a specific subgroup of patients with knee OA who exhibited widespread, multimodality hyperalgesia, more pain, more features of neuropathic pain, and greater functional impairment. Identification of patients with this pain phenotype may permit more targeted and effective pain management.
-
Clinical studies demonstrated peripheral nociceptor deficit in stress-related chronic pain states, such as fibromyalgia. The interactions of stress and nociceptive systems have special relevance in chronic pain, but the underlying mechanisms including the role of specific nociceptor populations remain unknown. We investigated the role of capsaicin-sensitive neurones in chronic stress-related nociceptive changes. ⋯ These are the first data demonstrating the complex interactions between capsaicin-sensitive neurones and chronic stress and their impact on nociception. Capsaicin-sensitive neurones are protective against stress-induced mechanical hyperalgesia by influencing neuronal plasticity in the brain.
-
Despite being a ubiquitous animal pain model, the natural TRPA1-agonist allyl isothiocyanate (AITC, also known as "mustard oil") has only been sparsely investigated as a potential human surrogate model of pain, sensitization, and neurogenic inflammation. Its dose-response as an algogenic, sensitizing irritant remains to be elucidated in human skin. Three concentrations of AITC (10%, 50%, and 90%) and vehicle (paraffin) were applied for 5 minutes to 3 × 3 cm areas on the volar forearms in 14 healthy volunteers, and evoked pain intensity (visual analog scale 0-100 mm) and pain quality were assessed. ⋯ Acute and prolonged inflammation was evoked by all concentrations, and assessments by full-field laser perfusion imaging demonstrated a significant dose-dependent increase with a ceiling effect from 50% to 90%. Topical AITC application produces pain and somatosensory sensitization in a dose-dependent manner with optimal concentrations recommended to be >10% and ≤50%. The model is translatable to humans and could be useful in pharmacological proof-of-concept studies of TRPA1-antagonists, analgesics, and anti-inflammatory compounds or for exploratory clinical purposes, eg, loss- or gain-of-function in peripheral neuropathies.