Articles: hyperalgesia.
-
Repeated use of opioid analgesics may cause a paradoxically exacerbated pain known as opioid-induced hyperalgesia (OIH), which hinders effective clinical intervention for severe pain. Currently, little is known about the neural circuits underlying OIH modulation. Previous studies suggest that laterocapsular division of the central nucleus of amygdala (CeLC) is critically involved in the regulation of OIH. ⋯ On the contrary, silencing this pathway by chemogenetics exacerbated OIH by activating the CeLC. Combined with the electrophysiology results, the enhanced synaptic transmission from IL to CeLC might be a cortical gain of IL to relieve OIH rather than a reason for OIH generation. Scaling up IL outputs to CeLC may be an effective neuromodulation strategy to treat OIH.
-
Knee osteoarthritis (KOA) pain is caused by nociceptors, which are actually sensory nerve fiber endings that can detect stimuli to produce and transmit pain signals, and high levels of NGF in synovial tissue led to peripheral hyperalgesia in KOA. The purpose of this study is to investigate how sensory nerve fibers respond to the NGF/TrKA signal pathway and mediate the peripheral hyperalgesia in KOA rats. ⋯ This study showed the activation of the NGF/TrKA signaling pathway in KOA promoted the release of pain mediators, increased the innervation of sensory nerve fibers in the synovium, and worsened peripheral hyperalgesia. It also showed increased TRPV1 positive sensory innervation in KOA was mediated by NGF/TrKA signaling and exacerbated peripheral hyperalgesia.
-
Preclinical studies on pathological pain rely on the von Frey test to examine changes in mechanical thresholds and the acetone spray test to determine alterations in cold sensitivity in rodents. These tests are typically conducted on rodent hindpaws, where animals with pathological pain show reliable nocifensive responses to von Frey filaments and acetone drops applied to the hindpaws. Pathological pain in orofacial regions is also an important clinical problem and has been investigated with rodents. ⋯ In the acetone spray test, the duration of orofacial responses was significantly prolonged in oxaliplatin-treated mice. The response frequencies to laser light stimulation were significantly increased in Nav1.8-ChR2 mice treated with oxaliplatin. Our sheltering tube method allows us to reliably perform the von Frey, acetone spray, and optogenetic tests in orofacial regions to investigate orofacial pain.
-
The incidence of peripheral nerve injury (PNI) in China is continuously increasing. With an inability to function due to sensory and motor abnormalities, patients with PNI suffer from neuropathic pain and subsequent lesions. Presently, effective treatments for PNI are limited. ⋯ Furthermore, NPD1 can inhibit the invasion of IBA-1+ macrophages in dorsal root ganglions generated by nerve injury. Meanwhile, it can help rehabilitate motor and neuromuscular functions following PNI. The results indicate that NPD1 may be involved in the sensory and motor function recovery following PNI.
-
Although previous studies suggest that Piezo2 regulates chronic pain in the orofacial area, few studies have reported the direct evidence of Piezo2's involvement in inflammatory and neuropathic pain in the orofacial region. In this study, we used male Sprague Dawley rats to investigate the role of the Piezo2 pathway in the development of inflammatory and neuropathic pain. The present study used interleukin (IL)-1β-induced pronociception as an inflammatory pain model. ⋯ Furthermore, subcutaneous and intracisternal injections of a Piezo2 inhibitor blocked neuropathic mechanical allodynia. These results suggest that the Piezo2 pathway plays a critical role in the development of inflammatory and neuropathic pain in the orofacial area. Therefore, blocking the Piezo2 pathway could be the foundation for developing new therapeutic strategies to treat orofacial pain conditions.