Articles: hyperalgesia.
-
Arthritis Rheumatol · Jul 2017
Effects of Treadmill Exercise on Advanced Osteoarthritis Pain in Rats.
Exercise is commonly recommended for patients with osteoarthritis (OA) pain. However, whether exercise is beneficial in ameliorating ongoing pain that is persistent, resistant to nonsteroidal antiinflammatory drugs (NSAIDs), and associated with advanced OA is unknown. ⋯ These findings support the conclusion that exercise induces pain relief in advanced, NSAID-resistant OA, likely through increased endogenous opioid signaling. In addition, treadmill exercise blocked MIA-induced bone loss in this model, indicating a potential bone-stabilizing effect of exercise on the OA joint.
-
We previously developed a model of opioid-induced neuroplasticity in the peripheral terminal of the nociceptor that could contribute to opioid-induced hyperalgesia, type II hyperalgesic priming. Repeated administration of mu-opioid receptor (MOR) agonists, such as DAMGO, at the peripheral terminal of the nociceptor, induces long-lasting plasticity expressed, prototypically as opioid-induced hyperalgesia and prolongation of prostaglandin E2-induced hyperalgesia. In this study, we evaluated the mechanisms involved in the maintenance of type II priming. ⋯ A second model of priming, latent sensitization, induced by complete Freund's adjuvant was also reversed, in males. In females, the inhibitor combination was only able to inhibit the expression and maintenance of DAMGO-induced priming when knockdown of G-protein-coupled estrogen receptor 30 (GPR30) in the nociceptor was performed. These findings demonstrate that the maintenance of DAMGO-induced type II priming, and latent sensitization is mediated by an interaction between, Src and MAP kinases, which in females is GPR30 dependent.
-
Experimental neurology · Jul 2017
Bilateral tactile hypersensitivity and neuroimmune responses after spared nerve injury in mice lacking vasoactive intestinal peptide.
Vasoactive intestinal peptide (VIP) is one of the neuropeptides showing the strongest up-regulation in the nociceptive pathway after peripheral nerve injury and has been proposed to support neuropathic pain. Nevertheless, the story may be more complicated considering the known suppressive effects of the peptide on the immune reactivity of microglial cells, which have been heavily implicated in the onset and maintenance of pain after nerve injury. We here used mice deficient in VIP and the model of spared nerve injury, characterized by persistent tactile hypersensitivity. ⋯ The latter was also observed at four weeks after spared nerve injury, a time at which bilateral tactile hypersensitivity persisted in VIP-deficient mice. These data suggest an action of VIP in neuropathic states that is more complicated than previously assumed. Future research is now needed for a deeper understanding of the relative contribution of receptors and fiber populations involved in the VIP-neuropathic pain link.
-
The present study was designed to investigate the roles of P2X3 receptors in dorsal root ganglion (DRG) neurons in colonic hypersensitivity and the effects of alpha-lipoic acid (ALA) on P2X3 receptor activity and colonic hypersensitivity of diabetic rats. Streptozotocin (STZ) was used to induce diabetic model. Abdominal withdrawal reflex (AWR) responding to colorectal distention (CRD) was recorded as colonic sensitivity. ⋯ Importantly, ALA treatment attenuated colonic hypersensitivity in diabetic rats. Our data suggest that STZ injection increases expression and function of P2X3 receptors of colon-specific DRG neurons, thus contributing to colonic hypersensitivity in diabetic rats. Administration of ALA attenuates diabetic colonic hypersensitivity, which is most likely mediated by suppressing expression and function of P2X3 receptors in DRGs of diabetic rats.
-
A bifunctional peptide containing an opioid and nociceptin receptor-binding pharmacophore, H-Dmt-D-Arg-Aba-β-Ala-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2 (KGNOP1), was tested for its analgesic properties when administered intrathecally in naïve and chronic constriction injury (CCI)-exposed rats with neuropathy-like symptoms. KGNOP1 significantly increased the acute pain threshold, as measured by the tail-flick test, and also increased the threshold of a painful reaction to mechanical and thermal stimuli in CCI-exposed rats. Both of the effects could be blocked by pre-administration of [Nphe1]-Nociceptin (1-13)-NH2 (NPhe) or naloxone, antagonists for nociceptin and opioid receptors, respectively. ⋯ Repeated daily intrathecal injections of KGNOP1 led to the development of analgesic tolerance, with the antiallodynic action being completely abolished on day 6. Nevertheless, the development of tolerance to the antihyperalgesic effect was delayed in comparison to morphine, which lost its efficacy as measured by the cold plate test after 3days of daily intrathecal administration, whereas KGNOP1 was efficient up to day 6. A single intrathecal injection of morphine to KGNOP1-tolerant rats did not raise the pain threshold in any of the behavioural tests; in contrast, a single intrathecal dose of KGNOP1 significantly suppressed allodynia and hyperalgesia in morphine-tolerant rats.