Articles: hyperalgesia.
-
Accumulating evidence has demonstrated that epigenetic modification-mediated changes in pain-related gene expressions play an important role in the development and maintenance of neuropathic pain. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, is involved in the development of chronic pain. Moreover, SIRT1 may be a novel therapeutic target for the prevention of type 2 diabetes mellitus (T2DM). ⋯ Concurrently, increased expressions of mGluR1/5 and H3 acetylation levels at Grm1/5 promoter regions were reversed by SIRT1 activation. In addition, knockdown of SIRT1 by Ad-SIRT1-shRNA induced pain behaviors and spinal neuronal activation in normal rats, which was accompanied by the increased expressions of mGluR1/5 and H3 acetylation levels at Grm1/5 promoter regions. Therefore, we concluded that SIRT1-mediated epigenetic regulation of mGluR1/5 expressions was involved in the development of neuropathic pain in type 2 diabetic rats.
-
Background Fatty-acid-binding proteins (FABPs) are intracellular carriers for endocannabinoids, N-acylethanolamines, and related lipids. Previous work indicates that systemically administered FABP5 inhibitors produce analgesia in models of inflammatory pain. It is currently not known whether FABP inhibitors exert their effects through peripheral or central mechanisms. ⋯ Although FABP5 and TRPV1 were co-expressed in the periaqueductal gray region of the brain, which is known to modulate pain, knockdown of FABP5 in the periaqueductal gray using adeno-associated viruses and pharmacological FABP5 inhibition did not produce analgesic effects. Conclusions This study demonstrates that FABP5 is highly expressed in nociceptive dorsal root ganglia neurons and FABP inhibitors exert peripheral and supraspinal analgesic effects. This indicates that peripherally restricted FABP inhibitors may serve as a new class of analgesic and anti-inflammatory agents.
-
The chronic postischemia pain (CPIP) model is an animal model using ischemia/reperfusion injury that mimics the symptoms of complex regional pain syndrome type I. Glutathione (GSH) prevents ischemia/reperfusion injury by scavenging free radicals. We conducted this study to investigate the protective effect of GSH in CPIP rats via changes of mechanical allodynia and phospholyration of the N-methyl-D-aspartate receptor subunit GluN1. ⋯ These findings suggest that GSH inhibited the development of mechanical allodynia and central sensitization in CPIP rats.
-
Hyperbaric oxygen (HBO) therapy has been suggested to palliate neuropathic pain, but the mechanisms involved are not well understood. This study explored the involvement of microglial mitophagy via HBO relative to neuropathic pain therapy. ⋯ HBO therapy palliated CCI-induced neuropathic pain in rats by upregulating microglial mitophagy. These results could serve as guidelines to improve neuropathic pain therapy using HBO to maximize therapeutic efficiency.
-
Background Although we have previously reported that intravenous resveratrol administration inhibits the nociceptive neuronal activity of spinal trigeminal nucleus caudalis neurons, the site of the central effect remains unclear. The aim of the present study was to examine whether acute intravenous resveratrol administration in the rat attenuates central glutamatergic transmission of spinal trigeminal nucleus caudalis neurons responding to nociceptive mechanical stimulation in vivo, using extracellular single-unit recordings and microiontophoretic techniques. Results Extracellular single-unit recordings using multibarrel electrodes were made from the spinal trigeminal nucleus caudalis wide dynamic range neurons responding to orofacial mechanical stimulation in pentobarbital anesthetized rats. ⋯ These inhibitory effects lasted approximately 20 min. The relative magnitude of inhibition by resveratrol of the glutamate-evoked spinal trigeminal nucleus caudalis wide dynamic range neuronal discharge frequency was similar to that for N-methyl-D-aspartate iontophoretic application. Conclusion These results suggest that resveratrol suppresses glutamatergic neurotransmission of the spinal trigeminal nucleus caudalis neurons responding to nociceptive mechanical stimulation via the N-methyl-D-aspartate receptor in vivo, and resveratrol may be useful as a complementary or alternative therapeutic agent for the treatment of trigeminal nociceptive pain.