Articles: hyperalgesia.
-
The incidence of peripheral nerve injury (PNI) in China is continuously increasing. With an inability to function due to sensory and motor abnormalities, patients with PNI suffer from neuropathic pain and subsequent lesions. Presently, effective treatments for PNI are limited. ⋯ Furthermore, NPD1 can inhibit the invasion of IBA-1+ macrophages in dorsal root ganglions generated by nerve injury. Meanwhile, it can help rehabilitate motor and neuromuscular functions following PNI. The results indicate that NPD1 may be involved in the sensory and motor function recovery following PNI.
-
Social support has been shown to reduce pain ratings and physiological responses to acute pain stimuli. Furthermore, this relationship is moderated by adult attachment styles. However, these effects have not been characterized in experimentally induced symptoms of chronic pain, such as secondary hyperalgesia (SH) which is characterized by an increased sensitivity of the skin surrounding an injury. ⋯ Attachment styles did not moderate this effect of social support on the area width. Increasing attachment avoidance was associated with both a smaller width of hyperalgesia and a smaller increase in the sensitivity on the stimulated arm. For the first time, we show that social support can attenuate the development of secondary hyperalgesia and that attachment avoidance may be associated with an attenuated development of secondary hyperalgesia.
-
Opioids are metabolised by enzymes the activities of which vary with the circadian rhythm. We examined whether opioid infusions administered at different times of the day produce varying degrees of opioid-induced hyperalgesia (OIH) in animal experiments and clinical studies. ⋯ NCT05234697.
-
We have previously shown that intradermal injection of high-molecular-weight hyaluronan (500-1200 kDa) produces localized antihyperalgesia in preclinical models of inflammatory and neuropathic pain. In the present experiments, we studied the therapeutic effect of topical hyaluronan, when combined with each of 3 transdermal drug delivery enhancers (dimethyl sulfoxide [DMSO], protamine or terpene), in preclinical models of inflammatory and neuropathic pain. Topical application of 500 to 1200 kDa hyaluronan (the molecular weight range used in our previous studies employing intradermal administration), dissolved in 75% DMSO in saline, markedly reduced prostaglandin E 2 (PGE 2 ) hyperalgesia, in male and female rats. ⋯ The topical administration of a combination of hyaluronan with 2 other transdermal drug delivery enhancers, protamine and terpene, also attenuated CIPN hyperalgesia, an effect that was more prolonged than with DMSO vehicle. Repeated administration of topical hyaluronan prolonged the duration of antihyperalgesia. Our results support the use of topical hyaluronan, combined with chemically diverse nontoxic skin penetration enhancers, to induce marked antihyperalgesia in preclinical models of inflammatory and neuropathic pain.
-
Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that binds numerous ligands including vascular endothelial growth factor A (VEGFA). Binding of this ligand to NRP-1 and the co-receptor, the tyrosine kinase receptor VEGFR2, elicits nociceptor sensitization resulting in pain through the enhancement of the activity of voltage-gated sodium and calcium channels. We previously reported that blocking the interaction between VEGFA and NRP-1 with the Spike protein of SARS-CoV-2 attenuates VEGFA-induced dorsal root ganglion (DRG) neuronal excitability and alleviates neuropathic pain, pointing to the VEGFA/NRP-1 signaling as a novel therapeutic target of pain. ⋯ Following in vivo editing of NRP-1, lumbar dorsal horn slices showed a decrease in the frequency of VEGFA-mediated increases in spontaneous excitatory postsynaptic currents. Finally, intrathecal injection of a lentivirus packaged with an NRP-1 guide RNA and Cas9 enzyme prevented spinal nerve injury-induced mechanical allodynia and thermal hyperalgesia in both male and female rats. Collectively, our findings highlight a key role of NRP-1 in modulating pain pathways in the sensory nervous system.