Articles: hyperalgesia.
-
C fibre hyperexcitability is fundamental to chronic pain development in humans and rodents; therefore, peripheral sensory neuronal sensitization plays a role in the development of mechanical hyperalgesia. However, the axonal properties and underlying mechanisms that are associated to these chronic pain states still require investigation. ⋯ Nerve injury-induced enhanced neural responses to mechanical stimulation are associated to defined parameters setout by conduction velocity slowing, mediated via axonal processing. Application of galanin inhibits axonal excitability.
-
Experimental neurology · Apr 2016
Analysis of the behavioral, cellular and molecular characteristics of pain in severe rodent spinal cord injury.
Human SCI is frequently associated with chronic pain that is severe and refractory to medical therapy. Most rodent models used to assess pain outcomes in SCI apply moderate injuries to lower thoracic spinal levels, whereas the majority of human lesions are severe in degree and occur at cervical or upper thoracic levels. To better model and understand mechanisms associated with chronic pain after SCI, we subjected adult rats to T3 severe compression or complete transection lesions, and examined pain-related behaviors for three months. ⋯ Notably, satellite glial cells (SGCs) in C6-C8 DRGs exhibited increases in GFAP and connexin-43, suggesting ongoing peripheral sensitization. Carbenoxolone, a gap junction inhibitor, and specific peptide inhibitors of connexin-43, ameliorated established tactile allodynia after severe SCI. Collectively, severe T3 SCI successfully models persistent pain states and could constitute a useful model system for examining candidate translational pain therapies after SCI.
-
The purpose of this study was to determine the role of spinal 5-HT2A, 5-HT2B and 5-HT2C receptors in the development and maintenance of formalin-induced long-lasting secondary allodynia and hyperalgesia in rats, as well as their expression in the dorsal root ganglia (DRG) during this process. ⋯ Data suggest that spinal 5-HT2A/2B/2C receptors have pronociceptive effects and participate in the development and maintenance of formalin-induced long-lasting hypersensitivity. These receptors are expressed in DRG and their expression is modulated by formalin.