Articles: hyperalgesia.
-
Besides neurons, activated microglia and astrocytes in the spinal cord dorsal horn (SCDH) contribute to the pathogenesis of chronic pain. Electroacupuncture (EA) has been used widely to treat various chronic pain diseases, however, the underlying mechanisms of EA are still not fully understood. ⋯ EA stimulation alleviates SNL-induced neuropathic pain, at least in part through inhibition of spinal glial activation. Moreover, inhibition of spinal microglia and astrocyte activation may contribute to the immediate effects and maintenance of EA analgesia, respectively.
-
Oxaliplatin, a chemotherapeutic drug for colorectal cancer, induces severe peripheral neuropathy. Bee venom acupuncture (BVA) has been used to attenuate pain, and its effect is known to be mediated by spinal noradrenergic and serotonergic receptors. Morphine is a well-known opioid used to treat different types of pain. ⋯ The combination of BVA and morphine at intermediate doses showed a greater and longer effect than either BVA or morphine alone at the highest dose. Intrathecal pretreatment with the opioidergic (naloxone, 20 μg) or 5-HT3 (MDL-72222, 15 μg) receptor antagonist, but not with α2 adrenergic (idazoxan, 10 μg) receptor antagonist, blocked this additive effect. Therefore, we suggest that the combination effect of BVA and morphine is mediated by spinal opioidergic and 5-HT3 receptors and this combination has a robust and enduring analgesic action against oxaliplatin-induced neuropathic pain.
-
Despite much evidence that combination of morphine and gabapentin can be beneficial for managing postoperative pain, the nature of the pharmacological interaction of the two drugs remains unclear. The aim of this study was to assess the interaction of morphine and gabapentin in range of different dose combinations and investigate whether co-administration leads to synergistic effects in a preclinical model of postoperative pain. The pharmacodynamic effects of morphine (1, 3 and 7mg/kg), gabapentin (10, 30 and 100mg/kg) or their combination (9 combinations in total) were evaluated in the rat plantar incision model using an electronic von Frey device. ⋯ The finding of dose-dependent synergistic effects highlights that choosing the right dose-dose combination is of importance in postoperative pain therapy. Our results indicate benefit of high doses of gabapentin as adjuvant to morphine. If these findings translate to humans, they might have important implications for the treatment of pain in postoperative patients.
-
Oxaliplatin, a chemotherapy drug used to treat colorectal cancer, induces specific sensory neurotoxicity signs that are aggravated by cold and mechanical stimuli. Here we examined the preventive effects of Bee Venom (BV) derived phospholipase A₂ (bvPLA₂) on oxaliplatin-induced neuropathic pain in mice and its immunological mechanism. The cold and mechanical allodynia signs were evaluated by acetone and von Frey hair test on the hind paw, respectively. ⋯ Daily treatment with bvPLA₂ (0.2 mg/kg, i.p.) for five consecutive days prior to the oxaliplatin injection markedly inhibited the development of cold and mechanical allodynia, and suppressed infiltration of macrophages and the increase of IL-1β level in the DRG. Such preventive effects of bvPLA₂ were completely blocked by depleting regulatory T cells (Tregs) with CD25 antibody pre-treatments. These results suggest that bvPLA₂ may prevent oxaliplatin-induced neuropathic pain by suppressing immune responses in the DRG by Tregs.
-
The involvement of the prefrontal cortex in pain processing has been recently addressed. We studied the role of the infralimbic cortex (IL) and group I metabotropic glutamate receptors (mGluRs) in descending modulation of nociception in control and monoarthritic (ARTH) conditions. Nociception was assessed using heat-induced paw withdrawal while drugs were microinjected in the IL of rats. ⋯ Finally, mGluR5 but not mGluR1 antagonists blocked the pronociceptive action of GLU in both groups. The results indicate that IL contributes to descending modulation of nociception. mGluR5 in the IL enhance nociception in healthy control and monoarthritic animals, an effect that is tonic in ARTH. Moreover, activation of IL mGluR1s attenuates nociception following the development of monoarthritis.