Articles: hyperalgesia.
-
Biochemical pharmacology · Feb 2015
GABAA α5 subunit-containing receptors do not contribute to reversal of inflammatory-induced spinal sensitization as indicated by the unique selectivity profile of the GABAA receptor allosteric modulator NS16085.
GABAA receptor positive allosteric modulators (PAMs) mediate robust analgesia in animal models of pathological pain. Restoration of diminished spinal GABAA-α2 and -α3 subunit-containing receptor function is a principal contributor to this analgesia, albeit involvement of GABAA-α5-receptors has not been excluded. Thus, we compared NS11394 and TPA023 (PAMs with selectivity/efficacy at GABAA-α2/α3/α5 receptors) with TP003 (a reportedly GABAA-α3 selective PAM) against spinal sensitization. ⋯ In adult rats, NS16085 (3-30 mg/kg, p.o.) dose-dependently reduced formalin-induced hindpaw flinching with efficacy comparable to NS11394. Thus, potentiation of GABAA-α2 and-α3 receptors is sufficient to depress spinal sensitization and mediate analgesia after inflammatory injury. Positive modulation at GABAA-α5-receptors is apparently dispensable for this process, an important consideration given the role of this receptor subtype in cognitive function.
-
Cav3.2 T-type Ca(2+) channels targeted by H2S, a gasotransmitter, participate in cyclophosphamide-induced cystitis and bladder pain. Given that zinc selectively inhibits Cav3.2 among T-channel isoforms and also exhibits antioxidant activity, we examined whether polaprezinc (zinc-l-carnosine), a medicine for peptic ulcer treatment and zinc supplementation, reveals preventive or therapeutic effects on bladder inflammation and/or pain in the mouse with cyclophosphamide-induced cystitis, a model for interstitial cystitis. Systemic administration of cyclophosphamide caused cystitis-related symptoms including increased bladder weight and vascular permeability, and histological signs of bladder edema, accompanied by bladder pain-like nociceptive behavior/referred hyperalgesia. ⋯ The same dose of polaprezinc also prevented the increased malondialdehyde level, an indicator of lipid peroxidation, and protein upregulation of cystathionine-γ-lyase, an H2S-generating enzyme, but not occludin, a tight junction-related membrane protein, in the bladder tissue of cyclophosphamide-treated mice. Oral posttreatment with polaprezinc at 30-100 mg/kg reversed the nociceptive behavior/referred hyperalgesia in a dose-dependent manner without affecting the increased bladder weight. Together, our data show that zinc supplementation with polaprezinc prevents the cyclophosphamide-induced cystitis probably through the antioxidant activity, and, like T-channel blockers, reverses the established cystitis-related bladder pain in mice, suggesting novel therapeutic usefulness of polaprezinc.
-
Anesthesia and analgesia · Feb 2015
The Antihyperalgesic Effects of Intrathecal Bupropion, a Dopamine and Noradrenaline Reuptake Inhibitor, in a Rat Model of Neuropathic Pain.
Antidepressants are often used for the treatment of neuropathic pain, and their analgesic effects rely on increased noradrenaline and serotonin levels in the spinal cord. Clinical studies have also shown that bupropion, a dopamine and noradrenaline reuptake inhibitor, has strong efficacy in neuropathic pain; however, the role of spinal cord dopamine in neuropathic pain is unknown. We hypothesized that bupropion inhibits neuropathic pain by increasing noradrenaline and dopamine in the spinal cord. In the present study, we determined the efficacy and underlying mechanisms of intrathecal administration of bupropion in a rat model of neuropathic pain. ⋯ These findings suggest that plasticity of descending inhibitory pathways such as the noradrenaline and dopamine systems contributes to the maintenance of neuropathic pain and that spinal cord noradrenaline and dopamine both play an inhibitory role in neuropathic pain.
-
Brain Behav. Immun. · Feb 2015
Acute increases in intramuscular inflammatory cytokines are necessary for the development of mechanical hypersensitivity in a mouse model of musculoskeletal sensitization.
Musculoskeletal pain is a widespread health problem in the United States. Back pain, neck pain, and facial pain are three of the most prevalent types of chronic pain, and each is characterized as musculoskeletal in origin. Despite its prevalence, preclinical research investigating musculoskeletal pain is limited. ⋯ The role of individual cytokines in mechanical hypersensitivity following musculoskeletal sensitization was assessed using knockout mice lacking components of the IL-1, IL-6 or TNF systems. Collectively, our data demonstrate that acidified saline injection increases intramuscular IL-1 and IL-6, but not TNF; that intramuscular pre-treatment with an NF-κB inhibitor blocks mechanical hypersensitivity; and that genetic manipulation of the IL-1 and IL-6, but not TNF systems, prevents mechanical hypersensitivity following musculoskeletal sensitization. These data establish that actions of IL-1 and IL-6 in local muscle tissue play an acute regulatory role in the development of mechanical hypersensitivity following musculoskeletal sensitization.
-
Neuropathic pain is a debilitating condition caused by damage to the somatosensory nervous system, such as peripheral nerve injury. The immune system, and in particular the adaptive T cell response, plays a key role in mediating such pain. Regulatory T (Treg) cells are a small subpopulation of inhibitory T cells that prevent autoimmunity, limit immunopathology and maintain immune homeostasis. ⋯ In particular, we observed significant increases in systemic concentration of RANTES, IL-2 and IL-5, and significant decreases in IL-12 and IFN-γ in nerve-injured Treg-depleted DEREG mice. Further analysis indicated a substantial increase in the serum concentration of IL-12p40 as a direct result of Treg cell depletion. These results suggest that depletion of Foxp3+ Treg cells promote nerve injury-induced pain hypersensitivity, partially by inducing altered systemic concentrations of cytokines, which may act to regulate neuropathic pain.