Articles: hyperalgesia.
-
J Pain Palliat Care Pharmacother · Jan 2015
Case ReportsOpioid-Induced Hyperalgesia: A Diagnostic Dilemma.
Opioids are utilized frequently for the treatment of moderate to severe acute pain in the perioperative setting, as well as in the treatment of cancer-related pain. When prescribing chronic opioid therapy to patients with chronic pain, it is crucial for the practitioner to be aware not only of the issues of tolerance and withdrawal, but also to have knowledge of the possibility for opioid-induced hyperalgesia (OIH). ⋯ In this case, high-dose opioid therapy did not improve chronic pain and contributed to a hyperalgesic state in which a young man experienced severe intractable pain postoperatively after two routine thoracotomies, despite aggressive pharmacologic measures to manage his perioperative pain. Furthermore, it illustrates the potential advantages of opioid rotation to methadone when OIH is suspected.
-
A subset of the population receiving opioids for the treatment of acute and chronic clinical pain develops a paradoxical increase in pain sensitivity known as opioid-induced hyperalgesia. Given that opioid analgesics are one of few treatments available against clinical pain, it is critical to determine the key molecular mechanisms that drive opioid-induced hyperalgesia in order to reduce its prevalence. Recent evidence implicates a splice variant of the mu opioid receptor known as MOR-1K in the emergence of opioid-induced hyperalgesia. Results from human genetic association and cell signaling studies demonstrate that MOR-1K contributes to decreased opioid analgesic responses and produces increased cellular activity via Gs signaling. Here, we conducted the first study to directly test the role of MOR-1K in opioid-induced hyperalgesia. ⋯ These findings suggest that MOR-1K is likely a necessary contributor to the development of opioid-induced hyperalgesia. With further research, MOR-1K could be exploited as a target for antagonists that reduce or prevent opioid-induced hyperalgesia.
-
Noxious stimulation of the skin with either chemical, electrical or heat stimuli leads to the development of primary hyperalgesia at the site of injury, and to secondary hyperalgesia in normal skin surrounding the injury. Secondary hyperalgesia is inducible in most individuals and is attributed to central neuronal sensitization. Some individuals develop large areas of secondary hyperalgesia (high-sensitization responders), while others develop small areas (low-sensitization responders). ⋯ A decreased volume of the right (p = 0.001) and left caudate nucleus (p = 0.01) was detected in high-sensitization responders in comparison to low-sensitization responders. These findings suggest that brain-structure and neuronal activation to noxious stimulation differs according to secondary hyperalgesia phenotype. This indicates differences in central sensitization according to phenotype, which may have predictive value on the susceptibility to development of high-intensity acute and persistent pain.
-
Neuropathic pain is a well-known type of chronic pain caused by damage to the nervous system. Until recently, researchers have found that increased generation of reactive oxygen species (ROS) contributes to the development of exaggerated pain hypersensitivity during neuropathic pain. ⋯ Taken together, our results suggest that administration of EGb761 can ameliorate neuropathic pain, and further indicate that JNK, which is activated by both exogenous and endogenous ROS, might be the mechanism underlying the effects of EGb761 on CCI neuropathic pain.
-
Age-related changes occur in both the peripheral and central nervous system, yet little is known about the influence of chronic pain on pain sensitivity in older persons. The aim of this study was to investigate pain sensitivity in elders with chronic neck pain compared to healthy elders. ⋯ The presence of pain hypersensitivity in elderly women with chronic neck pain appears to be dependent on types of painful stimuli. This may reflect changes in the peripheral and central nervous system with age.