Articles: hyperalgesia.
-
Bradykinin is a neuropeptide released after tissue damage which plays an important role in inflammatory pain. The up-regulation of the bradykinin B1 receptor in response to inflammation makes it an attractive target for drug development. Aim was to investigate if the selective B1 receptor antagonist BI113823 reduces inflammation-induced mechanical hyperalgesia and if the effect is mediated via peripheral and/or spinal B1 receptor antagonism. ⋯ The selective bradykinin B1 receptor antagonist BI113823 reduces CFA-induced mechanical hyperalgesia which is mediated via antagonism of peripheral as well as spinal bradykinin B1 receptors. The selective modulation of CFA-sensitized spinal NS neurons by BI113823 could be a promising property for the treatment of inflammatory pain.
-
Nummular headache (NH) is most commonly a localized unifocal headache; however, some patients infrequently exhibit multifocal symptomatic painful head areas retaining all features of NH. We present the pressure pain sensitivity map of an adolescent with multifocal NH. ⋯ This is the first pain sensitivity map of a patient with multifocal NH. Our results support peripheral mechanisms are maintained in multifocal NH.
-
Musculoskeletal pain is often associated with a nonhomogeneous distribution of mechanical hyperalgesia. Consequently, new methods able to detect this distribution are needed. ⋯ The present study showed that dynamic pressure algometry is a reliable tool for evaluating muscle hyperalgesia (threshold and pain rating) with high temporal and spatial resolution. It can be applied as a simple clinical bed-side test and as a quantitative tool in pharmacological profiling studies.
-
Restor. Neurol. Neurosci. · Jan 2015
Changes of voltage-gated sodium channels in sensory nerve regeneration and neuropathic pain models.
The present study was conducted to determine changes in the expression of voltage-gated sodium channels (VGSCs) α-subunits after nerve injury and their relation with development of neuropathic pain. ⋯ Shifts in VGSCs expression occur in parallel to neuropathic pain behavior in rats early after injury, while at later times they appear to be more related to sensory nerve degeneration and regeneration processes.
-
Remifentanil (an ultra-short acting μ-opioid receptor agonist) use has been associated with acute opioid tolerance and hyperalgesia. Previous electrophysiological studies have shown that remifentanil elicits rapid and prolonged upregulation of N-methyl-D-aspartate receptor (NMDAR) currents. However, the effect of remifentanil on the levels of the GluN1 subunit of the NMDAR in dorsal horn neurons (DHNs) has not been reported. ⋯ GluN1 mRNA and protein levels, determined by real time reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively, were significantly and persistently increased by remifentanil exposure compared with the control group (P < 0.05). These results may partially account for the mechanism of remifentanil-induced hyperalgesia. This increase was prevented by ketamine (NMDAR antagonist) and naloxone (μ-opioid receptors antagonist), thus providing a potential therapeutic mechanism for the prevention of opioid-induced hyperalgesia.