Articles: hyperalgesia.
-
Besides stimulating angiogenesis or cell survival, basic fibroblast growth factor (bFGF) has the potential for protecting neurons in the injured spinal cord. ⋯ Our findings suggest that bFGF-incorporated GH could have therapeutic potential for alleviating mechanical allodynia following spinal cord injury.
-
Physical therapists frequently use joint mobilization therapy techniques to treat people with musculoskeletal dysfunction and pain. Several studies suggest that endogenous adenosine may act in an analgesic fashion in various pain states. ⋯ This study demonstrated the involvement of the adenosinergic system in the antihyperalgesic effect of AJM in a rodent model of pain and provides a possible mechanism basis for AJM-induced relief of acute pain.
-
In rodents, surgery and/or remifentanil induce postoperative pain hypersensitivity together with glial cell activation. The same stimulus also produces long-lasting adaptative changes resulting in latent pain sensitization, substantiated after naloxone administration. Glial contribution to postoperative latent sensitization is unknown. ⋯ A transient microglia/macrophage and astrocyte activation was present between 30 min and 2 days postoperatively, while increased immunoreactivity in satellite glial cells lasted 21 days. At this time point, (-) naloxone, but not (+) naloxone, increased GFAP in satellite glial cells; conversely, both naloxone steroisomers similarly increased GFAP in the spinal cord. The report shows for the first time that surgery induces long-lasting morphological changes in astrocytes and satellite cells, involving opioid and toll-like receptors, that could contribute to the development of latent pain sensitization in mice.
-
Endothelin-1 (ET-1) is unique among a broad range of hyperalgesic agents in that it induces hyperalgesia in rats that is markedly enhanced by repeated mechanical stimulation at the site of administration. Antagonists to the ET-1 receptors, ET(A) and ET(B), attenuated both initial as well as stimulation-induced enhancement of hyperalgesia (SIEH) by endothelin. However, administering antisense oligodeoxynucleotide to attenuate ET(A) receptor expression on nociceptors attenuated ET-1 hyperalgesia but had no effect on SIEH, suggesting that this is mediated via a non-neuronal cell. ⋯ Compatible with endothelial cells releasing ATP in response to mechanical stimulation, P2X(2/3) receptor antagonists eliminated SIEH. The endothelium also appears to contribute to hyperalgesia in two ergonomic pain models (eccentric exercise and hindlimb vibration) and in a model of endometriosis. We propose that SIEH is produced by an effect of ET-1 on vascular endothelial cells, sensitizing its release of ATP in response to mechanical stimulation; ATP in turn acts at the nociceptor P2X(2/3) receptor.