Articles: hyperalgesia.
-
Agonists selective for the α7 nicotinic acetylcholine (nACh) receptor produce anti-hyperalgesic effects in rodent models of inflammatory pain, via direct actions on spinal pain circuits and possibly via attenuated release of peripheral pro-inflammatory mediators. Increasingly, allosteric modulation of ligand-gated receptors is recognized as a potential strategy to obtain desired efficacy in the absence of the putative adverse effects associated with agonist activation. ⋯ α7 nACh receptor PAMs could prove to be useful in the treatment of inflammatory pain conditions, which respond poorly to NSAIDs or in situations where NSAIDs are contra-indicated.
-
Previous studies showed that 5-hydroxytryptamine (5-HT)(1B/1D) receptor stimulation by triptans alleviates neuropathic pain caused by chronic constriction injury to the infraorbital nerve (CCI-ION) but not the sciatic nerve (CCI-SN) in rats. To assess whether such differential effects in the cephalic vs extracephalic territories is a property shared by other antimigraine drugs, we used the same models to investigate the effects of olcegepant, which has an antimigraine action mediated through calcitonin gene-related peptide (CGRP) receptor blockade. Adult male rats underwent unilateral CCI to the ION or the SN, and subsequent allodynia and/or hyperalgesia were assessed in ipsilateral vibrissal territory or hindpaw, respectively, using von Frey filaments and validated nociceptive tests. c-Fos expression was quantified by immunohistochemistry and interleukin 6 and activating transcription factor 3 (ATF3) mRNAs by real-time quantitative reverse transcriptase-polymerase chain reaction. ⋯ A supra-additive antiallodynic effect was observed in CCI-ION rats treated with olcegepant (0.3mg/kg intravenously) plus naratriptan (0.1mg/kg subcutaneously), whereas this drug combination remained inactive in CCI-SN rats. Olcegepant (0.6mg/kg, intravenously) significantly reduced the number of c-Fos immunolabeled cells in spinal nucleus of the trigeminal nerve and upregulation of ATF3 transcript (a marker of neuron injury) but not that of interleukin-6 in trigeminal ganglion of CCI-ION rats. These findings suggest that CGRP receptor blockade might be of potential interest to alleviate trigeminal neuropathic pain.
-
Randomized Controlled Trial
Hyperbaric oxygen therapy attenuates neuropathic hyperalgesia in rats and idiopathic trigeminal neuralgia in patients.
Neuropathic pain after nerve injury is severe and intractable, and current drug and non-drug therapies offer very limited pain relief. Hyperbaric oxygen (HBO 2) has been clinically used for protection of the nervous system after acute injury. We investigated whether HBO 2 treatment could prevent and/or attenuate neuropathic pain in animals and in patients. ⋯ These findings support that HBO 2 therapy is an effective approach for treating neuropathic pain in both animals and human beings and suggest that neural protection, anti-inflammation and inhibition of nerve injury-induced altered neural activity may contribute to the analgesic effect of HBO 2 therapy.
-
Persistent pains associated with inflammatory and neuropathic states are prevalent and debilitating diseases, which still remain without a safe and adequate treatment. Euphol, an alcohol tetracyclic triterpene, has a wide range of pharmacological properties and is considered to have anti-inflammatory action. Here, we assessed the effects and the underlying mechanisms of action of euphol in preventing inflammatory and neuropathic pain. ⋯ In addition, the pre-treatment with either CB₁R or CB₂R antagonists, as well as the knockdown gene of the CB₁R and CB₂R, significantly reversed the antinociceptive effect of euphol. Interestingly, even in higher doses, euphol did not cause any relevant action in the central nervous system. Considering that few drugs are currently available for the treatment of chronic pain states, the present results provided evidence that euphol constitutes a promising molecule for the management of inflammatory and neuropathic pain states.
-
J. Allergy Clin. Immunol. · Sep 2012
Artemin causes hypersensitivity to warm sensation, mimicking warmth-provoked pruritus in atopic dermatitis.
Itch impairs the quality of life for many patients with dermatoses, especially atopic dermatitis (AD), and is frequently induced by a warm environment. ⋯ These data suggest that dermal fibroblasts secrete artemin in response to substance P, leading to abnormal peripheral innvervation and thermal hyperalgesia. We hypothesize that artemin lowers the threshold of temperature-dependent itch sensation and might therefore be a novel therapeutic target for treating pruritic skin disorders, including AD.