Articles: hyperalgesia.
-
J. Korean Med. Sci. · Oct 2011
Pharmacology of intracisternal or intrathecal glycine, muscimol, and baclofen in strychnine-induced thermal hyperalgesia of mice.
Glycine and γ-aminobutyric acid (GABA) are localized and released by the same interneurons in the spinal cord. Although the effects of glycine and GABA on analgesia are well known, little is known about the effect of GABA in strychnine-induced hyperalgesia. To investigate the effect of GABA and the role of the glycine receptor in thermal hyperalgesia, we designed an experiment involving the injection of muscimol (a GABA(A) receptor agonist), baclofen (a GABA(B) receptor agonist) or glycine with strychnine (strychnine sensitive glycine receptor antagonist). ⋯ Intracisternal or intrathecal administration of strychnine produced thermal hyperalgesia in mice. Glycine antagonize the effects of strychnine, whereas, muscimol or baclofen does not. Our results indicate that glycine has anti-thermal hyperalgesic properties in vivo; and GABA receptor agonists may lack the binding abilities of glycine receptor antagonists with their sites in the central nervous system.
-
Randomized Controlled Trial
Effect of transdermal opioids in experimentally induced superficial, deep and hyperalgesic pain.
Chronic pain and hyperalgesia can be difficult to treat with classical opioids acting predominately at the µ-opioid receptor. Buprenorphine and its active metabolite are believed to act through µ-, κ- and δ-receptors and may therefore possess different analgesic and anti-hyperalgesic effects compared with pure µ-receptor agonists, for example, fentanyl. Here, we have compared the analgesic and anti-hyperalgesic effects of buprenorphine and fentanyl. ⋯ Buprenorphine, but not fentanyl, showed analgesic effects against experimentally induced, bone-associated pain and primary hyperalgesia compared with placebo. These tissue- and modality-differentiated properties may reflect the variable effects of opioid drugs observed in individual patients.
-
Comparative Study
Genotype-selective phenotypic switch in primary afferent neurons contributes to neuropathic pain.
Pain is normally mediated by nociceptive Aδ and C fibers, while Aβ fibers signal touch. However, after nerve injury, Aβ fibers may signal pain. Using a genetic model, we tested the hypothesis that phenotypic switching in neurotransmitters expressed by Aβ afferents might account for heritable differences in neuropathic pain behavior. ⋯ Substance P immunoreactivity was also upregulated in large-diameter neurons, but this change was similar in the 2 lines. Our findings suggest that phenotypic switching contributes to the heritable difference in pain behavior in HA vs LA rats. Specifically, we propose that in HA rats, but less so in LA rats, injured, spontaneously active Aβ afferents both directly drive CGRP-sensitive central nervous system pain-signaling neurons and also trigger and maintain central sensitization, hence generating spontaneous pain and tactile allodynia.
-
The perception of pain is initiated by the transduction of noxious stimuli through specialized ion channels and receptors expressed by primary nociceptive neurons. The molecular mechanisms that orchestrate the expression and function of ion channels relevant for pain processing are poorly understood. We demonstrate here a central role of the transcription factor Smad-interacting protein 1 (Sip1/Zfhx1b/Zeb2), a 2-handed zinc finger DNA-binding protein with essential functions in neural crest and forebrain development, in controlling nociceptive neuron excitability and pain sensitivity. ⋯ Analysis of the voltage-gated currents underlying repetitive firing revealed a significant increase in persistent sodium currents and a reduction in delayed rectifier potassium currents. Modeling experiments in conjunction with experimental results suggest that these changes cause a depolarization-induced block of action potential propagation past the DRG axon T-junction. These data suggest that Sip1 controls the transduction properties of heat-sensitive primary sensory neurons and thus thermal pain sensitivity in a novel manner via coordinated changes in DRG-neuron voltage-gated ion channels.
-
Our aim was to quantify spatial differences in pressure and thermal pain sensitivity maps between patients with unilateral lateral epicondylalgia (LE) and age- and sex-matched controls. Pressure (PPT), cold (CPT), and heat (HPT) pain thresholds were assessed over 12 points forming a 3 × 4 matrix (4 points in the superior part, 4 points in the middle, and 4 points in the lower part around the lateral epicondyle) bilaterally in 16 subjects with strictly unilateral LE and 16 age- and sex-matched controls in a blinded design. Topographical pain sensitivity maps to pressure and thermal stimulation over the elbow in patients with LE and healthy controls were calculated. A multilevel 3-way ANCOVA test was applied to detect differences in topographical maps between groups. Subjects with LE showed bilateral lower PPT, higher CPT (pain at higher temperature) and lower HPT (pain at lower temperature) at all the measurement points as compared to controls (all, P < .01). PPT were lower at points over the extensor carpi radialis brevis (ECRB) muscle as compared to points over the extensor digitorum communis muscle (P < .01) and over the extensor carpi ulnaris muscle (P < .001). CPT and HPT were not significantly different between points (P > .05). Topographical pressure and thermal pain sensitivity maps revealed bilateral hyperalgesia in patients with strictly unilateral LE. LE patients exhibited heterogeneously distributed pressure pain hyperalgesia while cold or heat maps were homogenous. The most sensitive localizations for PPT assessment corresponded to the muscle belly of the ECRB. Our results confirm the role of ECRB muscle in LE and argue for evidence of peripheral and central sensitization mechanisms in patients with strictly unilateral symptoms. ⋯ Topographical pressure and thermal sensitivity maps revealed bilateral hyperalgesia in patients with strictly unilateral lateral epicondylalgia (LE). LE patients exhibited heterogeneously distributed pressure pain hyperalgesia while cold or heat pain maps were homogenous. The most sensitive localizations for PPT assessment corresponded to the muscle belly of the ECRB.