Articles: hyperalgesia.
-
Motor cortex stimulation (MCS) has been used to treat patients with neuropathic pain resistant to other therapeutic approaches; however, the mechanisms of pain control by MCS are still not clearly understood. We have demonstrated that MCS increases the nociceptive threshold of naive conscious rats, with opioid participation. In the present study, the effect of transdural MCS on neuropathic pain in rats subjected to chronic constriction injury of the sciatic nerve was investigated. ⋯ Zif268 results were similar to those obtained for Fos, although no changes were observed for Zif268 in the anterior cingulate cortex and the central amygdaloid nucleus after MCS. The present findings suggest that MCS reverts neuropathic pain phenomena in rats, mimicking the effect observed in humans, through activation of the limbic and descending pain inhibitory systems. Further investigation of the mechanisms involved in this effect may contribute to the improvement of the clinical treatment of persistent pain.
-
To investigate bilateral widespread pressure pain hyperalgesia in deep tissues over symptomatic (trigemino-cervical) and nonsymptomatic (distant pain-free) regions in patients with cluster headache (CH). ⋯ Our findings revealed bilateral widespread pressure pain hypersensitivity in patients with CH confirming the presence of central sensitization mechanisms in this headache condition.
-
Sphingosine-1-phosphate (S1P) is an important mediator of inflammation recently shown in in vitro studies to increase the excitability of small-diameter sensory neurons, at least in part, via activation of the S1P(1) receptor subtype. Activation of S1PR(1) has been reported to increase the formation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived superoxide (O(2)(·-)) and nitric oxide synthase (NOS)-derived nitric oxide (NO). This process favors the formation of peroxynitrite (ONOO(-) [PN]), a potent mediator of hyperalgesia associated with peripheral and central sensitization. ⋯ The development of S1P-induced hyperalgesia was blocked by apocynin, a NADPH oxidase inhibitor; N(G)-nitro-l-arginine methyl ester, a nonselective NOS inhibitor; and by the potent PN decomposition catalysts (FeTM-4-PyP(5+) and MnTE-2-PyP(5+)). Our findings provide mechanistic insight into the signaling pathways engaged by S1P in the development of hyperalgesia and highlight the contribution of the S1P(1) receptor-to-PN signaling in this process. Sphingosine-1-phosphate (S1P)-induced hyperalgesia is mediated by S1P1 receptor activation and mitigated by inhibition or decomposition of peroxynitrite, providing a target pathway for novel pain management strategies.
-
Neuropathic pain alters opioid self-administration in rats. The brain regions altered in the presence of neuropathic pain mediating these differences have not been identified, but likely involve ascending pain pathways interacting with the limbic system. The amygdala is a brain region that integrates noxious stimulation with limbic activity. ⋯ μ-Opioid receptors in the lateral amygdala partially meditate heroin's antiallodynic effects and self-administration after peripheral nerve injury. The lack of effect of β-funaltrexamine on heroin self-administration in sham-operated subjects suggests that opioids maintain self-administration through a distinct mechanism in the presence of pain.
-
The transient receptor potential ankyrin 1 (TRPA1) ion channel is expressed on nociceptive primary afferent neurons. On the proximal nerve ending within the spinal dorsal horn, TRPA1 regulates transmission to spinal interneurons, and thereby pain hypersensitivity. Here we assessed whether the contribution of the spinal TRPA1 channel to pain hypersensitivity varies with the experimental pain model, properties of test stimulation or the behavioral pain response. ⋯ Conversely, i.t. administration of a TRPA1 channel agonist, cinnamon aldehyde, induced mechanical hypersensitivity. The results indicate that the spinal TRPA1 channel exerts an important role in secondary (central) pain hypersensitivity to low-intensity mechanical stimulation in various pain hypersensitivity conditions. The spinal TRPA1 channel provides a promising target for the selective attenuation of a central mechanism contributing to pathophysiological pain.