Articles: hyperalgesia.
-
Morphine and related compounds are the first line of therapy in the treatment of moderate to severe pain. Over time, individuals taking opioids can develop an increasing sensitivity to noxious stimuli, even evolving into a painful response to previously non-noxious stimuli (opioid-induced hyperalgesia; OIH). The mechanism underlying OIH is not well understood although complex intracellular neural mechanisms, including opioid receptor desensitization and down-regulation, are believed to be major mechanisms underlying OIH. ⋯ We further determined that there is pronounced CXCR4 expression in satellite glial cells and following morphine treatment, increased functional CXCR4 expression in sensory neurons of the DRG. Moreover, intraperitoneal administration of the specific CXCR4 antagonist, AMD3100, completely reversed OIH in the rat. Taken together; the data suggest that opioid-induced SDF1/CXCR4 signaling is central to the development of long lasting OIH and that receptor antagonists represent a promising novel approach to the management of the side effects associated with the use of opioids for chronic pain management.
-
One approach to the study of disordered spatial attention is to carry out tests of extinction, in which stimuli are detected on the left when they are presented on the left alone, but not when both sides are stimulated simultaneously in a dual simultaneous stimulation (DSS) protocol. Extinction has been documented for multiple sensory modalities, but not for thermal pain stimuli, to our knowledge. We now test the hypothesis that subjects with visual spatial neglect (hemi-neglect) will have alterations in thermal pain sensation which are related to abnormal spatial attention. ⋯ Ratios indicating the magnitude of extinction, mislocalization and misidentification were significantly larger on the left side of subjects with visual spatial neglect than in healthy controls or in controls with stroke but without hemineglect. The proportion of subjects with thermal pain extinction, mislocalization, or misidentification was significantly higher in subjects with hemi-neglect than those in either control group. These results demonstrate that disordered attention exerts a powerful effect upon the perception of both the location and the quality of thermal pain stimuli.
-
Sphingosine-1-phosphate (S1P) is an important mediator of inflammation recently shown in in vitro studies to increase the excitability of small-diameter sensory neurons, at least in part, via activation of the S1P(1) receptor subtype. Activation of S1PR(1) has been reported to increase the formation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived superoxide (O(2)(·-)) and nitric oxide synthase (NOS)-derived nitric oxide (NO). This process favors the formation of peroxynitrite (ONOO(-) [PN]), a potent mediator of hyperalgesia associated with peripheral and central sensitization. ⋯ The development of S1P-induced hyperalgesia was blocked by apocynin, a NADPH oxidase inhibitor; N(G)-nitro-l-arginine methyl ester, a nonselective NOS inhibitor; and by the potent PN decomposition catalysts (FeTM-4-PyP(5+) and MnTE-2-PyP(5+)). Our findings provide mechanistic insight into the signaling pathways engaged by S1P in the development of hyperalgesia and highlight the contribution of the S1P(1) receptor-to-PN signaling in this process. Sphingosine-1-phosphate (S1P)-induced hyperalgesia is mediated by S1P1 receptor activation and mitigated by inhibition or decomposition of peroxynitrite, providing a target pathway for novel pain management strategies.
-
The role of 5-hydroxytryptamine (5-HT)(4), 5-HT(6), and 5-HT(7) receptors in formalin-induced secondary allodynia and hyperalgesia in rats was assessed. Formalin produced acute nociceptive behaviors (flinching and licking/lifting) followed by long-term secondary mechanical allodynia and hyperalgesia. Pretreatment (-10min) with cromoglycate (195-1950nmol/paw) partially inhibited acute nociceptive behaviors and completely prevented secondary allodynia and hyperalgesia on day 6 after injection. ⋯ The pronociceptive effect of ML-10302 (100nmol/paw), EMD-386088 (0.01nmol/paw), and LP-12 (100nmol/paw) were completely prevented by GR-125487 (5-HT(4) antagonist, 1nmol/paw), SB-258585 (5-HT(6) antagonist, 0.00001nmol/paw), and SB-269970 (5-HT(7), antagonist, 0.01nmol/paw), respectively. Ipsilateral peripheral posttreatment with cromoglycate or GR-125487 (1-100nmol/paw), SB-258585 (0.001-0.1nmol/paw), and SB-269970 (0.1-10nmol/paw) reversed formalin-induced secondary allodynia and hyperalgesia in both paws. Results suggest that a barrage of afferent input induced by 5-HT at peripheral 5-HT(4), 5-HT(6), and 5-HT(7) receptors participate in the development and maintenance of formalin-induced long-term secondary allodynia and hyperalgesia in the rat. 5-hydroxytryptamine (5-HT) released in peripheral tissues after formalin injection sensitized primary afferent neurons via 5-HT(4), 5-HT(6), and 5-HT(7) receptors, leading to development and maintenance of secondary allodynia and hyperalgesia.
-
Neuropathic pain alters opioid self-administration in rats. The brain regions altered in the presence of neuropathic pain mediating these differences have not been identified, but likely involve ascending pain pathways interacting with the limbic system. The amygdala is a brain region that integrates noxious stimulation with limbic activity. ⋯ μ-Opioid receptors in the lateral amygdala partially meditate heroin's antiallodynic effects and self-administration after peripheral nerve injury. The lack of effect of β-funaltrexamine on heroin self-administration in sham-operated subjects suggests that opioids maintain self-administration through a distinct mechanism in the presence of pain.