Articles: hyperalgesia.
-
Methods Find Exp Clin Pharmacol · Oct 2010
Comparative StudyValidation of the digital pressure application measurement (PAM) device for detection of primary mechanical hyperalgesia in rat and mouse antigen-induced knee joint arthritis.
Several tests have been developed to obtain mechanical nociceptive withdrawal thresholds for arthritis-associated pain research in preclinical animal models, which are routinely used for testing the efficacy of antinociceptive pharmaceutical candidates. Here, we aimed to validate a recently introduced and commercially available digital pressure application measurement (PAM) device for the detection of primary mechanical hyperalgesia in a model of antigen-induced knee joint arthritis (AIA) in rats and mice. Two particular advantages of the PAM device are visual feedback control of the force increase rate and the detection of the complete threshold range. ⋯ Inter-observer agreement was generally higher when using PAM instead of an analog dynamometer. In conclusion, the digital PAM device is a suitable apparatus to detect primary mechanical hyperalgesia in experimental knee joint arthritis in rats and mice. The use of this device allows visual feedback control of the stimulus rate, thus minimizing the chances of confounding factors arising from differences in ramp speed.
-
Journal of neurochemistry · Oct 2010
Light touch induces ERK activation in superficial dorsal horn neurons after inflammation: involvement of spinal astrocytes and JNK signaling in touch-evoked central sensitization and mechanical allodynia.
Activation of extracellular signal-regulated kinase (ERK) in spinal cord neurons could serve as a marker for sensitization of dorsal horn neurons in persistent pain. ERK is normally activated by high-threshold noxious stimuli. We investigated how low-threshold mechanical stimuli could activate ERK after complete Freund's adjuvant (CFA)-induced inflammation. ⋯ Intrathecal administration of the astroglial toxin L-α-aminoadipate on post-CFA day 2 reversed CFA-induced bilateral mechanical allodynia but not heat hyperalgesia. Furthermore, L-α-aminoadipate, the glial inhibitor fluorocitrate, and a peptide inhibitor of c-Jun N-terminal Kinase all reduced light touch-evoked ERK activation ipsilateral to touch. Collectively, these data suggest that (i) ERK can be activated in superficial dorsal horn neurons by low-threshold mechanical stimulation under pathological condition and (ii) ERK activation by light touch is associated with mechanical allodynia and requires an astrocyte network.
-
Randomized Controlled Trial Clinical Trial
Predicting the analgesic effect to oxycodone by 'static' and 'dynamic' quantitative sensory testing in healthy subjects.
The large inter-individual variability in the magnitude of analgesia in response to opioids and the high prevalence of adverse events associated with their use underline the clinical importance of being able to predict who will or will not respond to opioid treatment. The present study used both static and dynamic quantitative sensory testing (QST) on 40 healthy volunteers in order to test whether this methodology can predict the analgesic effects of oral oxycodone, as compared to a placebo, on latency to onset, pain intensity, and tolerance to the cold pressor test (CPT). Static QST consisted of measuring heat and cold pain thresholds. ⋯ The static QST results showed that heat pain thresholds predicted the magnitude of reduction in pain intensity in response to oxycodone treatment (F((1,22))=5.63, p=0.027, R(2)=0.17). The dynamic QST results showed that TS predicted the effect of oxycodone on the tolerance to CPT (F((1,38))=9.11, p=0.005, R(2)=0.17). These results suggest that both static and dynamic QST have the potential to be useful in the prediction of the response to opioid treatment.
-
Vascular endothelial growth factor (VEGF)-A mRNA was previously identified as one of the significantly upregulated transcripts in spinal cord injured tissue from adult rats that developed allodynia. To characterize the role of VEGF-A in the development of pain in spinal cord injury (SCI), we analyzed mechanical allodynia in SCI rats that were treated with either vehicle, VEGF-A isoform 165 (VEGF(165)), or neutralizing VEGF(165)-specific antibody. We have observed that exogenous administration of VEGF(165) increased both the number of SCI rats that develop persistent mechanical allodynia, and the level of hypersensitivity to mechanical stimuli. ⋯ It is possible that another endogenous VEGF isoform activates the same signaling pathway as the exogenously-administered 165 isoform and contributes to SCI pain. Our transcriptional analysis revealed that endogenous VEGF(188) is likely to be the isoform involved in the development of allodynia after SCI. To the best of our knowledge, this is the first study to suggest a possible link between VEGF, nonspecific sprouting of myelinated axons, and mechanical allodynia following SCI.
-
Pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38) and its receptors (PAC1 and VPAC) have been shown in the spinal dorsal horn, dorsal root ganglia and sensory nerve terminals. Data concerning the role of PACAP in central pain transmission are controversial and we have recently published its divergent peripheral effects on nociceptive processes. The aim of the present study was to investigate acute somatic and visceral nocifensive behaviours, partial sciatic nerve ligation-evoked chronic neuropathic, as well as resiniferatoxin-induced inflammatory thermal and mechanical hyperalgesia in PACAP deficient (PACAP(-/-)) mice to elucidate its overall function in pain transmission. ⋯ These data clearly demonstrate an overall excitatory role of PACAP in pain transmission originating from both exteroceptive and interoceptive areas, it is also involved in central sensitization. This can be explained by the signal transduction mechanisms of its identified receptors, both PAC1 and VPAC activation leads to neuronal excitation. In contrast, it is an inhibitory mediator at the level of the peripheral sensory nerve endings and decreases their sensitization to heat with presently unknown mechanisms.