Articles: hyperalgesia.
-
J. Pharmacol. Exp. Ther. · Sep 2010
Monoamine-dependent, opioid-independent antihypersensitivity effects of intrathecally administered milnacipran, a serotonin noradrenaline reuptake inhibitor, in a postoperative pain model in rats.
The neurotransmitters serotonin (5-HT) and noradrenaline (NA) have important roles in suppressing nociceptive transmission in the spinal cord. In the present study, we determined the efficacy and nature of the antihypersensitivity effects of milnacipran, a 5-HT and NA reuptake inhibitor (SNRI), in the spinal cord in a rat model of postoperative pain. Sprague-Dawley rats were used in all experiments. ⋯ Microdialysis studies revealed that milnacipran increased both 5-HT and NA levels in the spinal dorsal horn. These findings suggest that the antihypersensitivity effect of intrathecal milnacipran in the postoperative pain model is monoamine-mediated. Combined administration of an SNRI with morphine might be a promising treatment to suppress postoperative hypersensitivity.
-
The study analyzes the chemical composition of the essential oil obtained from the leaves of Ugni myricoides (Kunth) O. Berg (U. myricoides EO). The composition of the essential oil was characterized by GC-FID and GC-MS analysis, showing at least six major constituents: α-pinene (52.1%), 1,8-cineole (11.9%), α-humulene (4.6%), caryophyllene oxide + globulol (4.5%), humulene epoxide II (4.2%) and β-caryophyllene (2.9%). ⋯ Repeated treatment with U. myricoides EO (5-25 mg/kg, p.o.), α-pinene (5-50 mg/kg, p.o.), or gabapentin (70 mg/kg, p.o.) also abolished the mechanical sensitization induced by CFA, or following the partial ligation of the sciatic nerve (PLSN). The present results indicate that U. myricoides EO produces marked anti-hypernociceptive effects in carrageenan and CFA mechanical sensitization models, and also inhibited neuropathic pain-like behavior after PLSN with efficacy similar to that observed for indomethacin or gabapentin. The relevant effects shown by U. myricoides EO are related, at least in part, to the presence of α-pinene and may be of potential interest for the management of inflammatory and neuropathic pain.
-
J. Pharmacol. Exp. Ther. · Sep 2010
The role of nitric oxide in the local antiallodynic and antihyperalgesic effects and expression of delta-opioid and cannabinoid-2 receptors during neuropathic pain in mice.
Both delta-opioid receptor (DOPr) and cannabinoid-2 receptor (CB2R) agonists attenuate neuropathic pain, but the precise mechanism implicated in these effects is not completely elucidated. We investigated whether nitric oxide synthesized by neuronal (NOS1) or inducible (NOS2) nitric-oxide synthases could modulate DOPr and/or CB2R antiallodynic and antihyperalgesic effects through the peripheral nitric oxide-cGMP-protein kinase G (PKG) pathway activation and affect their expression during neuropathic pain. In wild-type (WT) mice at 21 days after chronic constriction of sciatic nerve, we evaluated the effects of [d-Pen(2),d-Pen(5)]-enkephalin (DPDPE); (2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenylmethanone (JWH-015); and a NOS1 [N-[(4S)-4-amino-5-[(2-aminoethyl)amino]pentyl]-N'-nitroguanidine tris(trifluoroacetate) salt; NANT], NOS2 [l-N(6)-(1-iminoethyl)-lysine; l-NIL], l-guanylate cyclase [1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; ODQ], or PKG [(Rp)-8-(para-chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate; Rp-8-pCPT-cGMPs] inhibitor administered alone or combined. ⋯ The subplantar administration of NANT, l-NIL, ODQ, or Rp-8-pCPT-cGMPs dose-dependently inhibited neuropathic pain and enhanced the local effects of DPDPE or JWH-015. Moreover, although the basal levels of DOPr and CB2R mRNA were similar between WT and NOS-KO animals, nerve injury only decreased (DOPr) or increased (CB2R) their expression in the dorsal root ganglia of WT and NOS2-KO mice, and not in NOS1-KO mice. Results suggest that inactivation of the nitric oxide-cGMP-PKG peripheral pathway triggered by NOS1 and NOS2 enhanced the peripheral actions of DOPr and CB2R agonists and that nitric oxide synthesized by NOS1 is implicated in the peripheral regulation of DOPr and CB2R gene transcription during neuropathic pain.
-
The transient receptor potential vanilloid 1 (TRPV1) receptor is activated by noxious heat, various endogenous mediators and exogenous irritants. The aim of the present study was to compare three TRPV1 receptor antagonists (SB705498, BCTC and AMG9810) in rat models of heat hyperalgesia. The behavioural noxious heat threshold, defined as the lowest temperature evoking nocifensive reaction, was measured with an increasing-temperature water bath. ⋯ Plantar incision-induced heat threshold drop (7-8 degrees C) was dose-dependently diminished by an oral post-treatment with any of the antagonists with minimum effective doses of 10, 3 and 3mg/kg, respectively. Assessment of RTX hyperalgesia by measurement of the paw withdrawal latency with a plantar test apparatus yielded 30 mg/kg minimum effective dose for each antagonist. In conclusion, measurement of the noxious heat threshold with the increasing-temperature water bath is suitable to sensitively detect the effects of TRPV1 receptor antagonists in thermal hyperalgesia models.
-
Levetiracetam, a novel antiepileptic drug, has recently been shown to have antinociceptive effects in various animal models of pain. The purpose of this study was to investigate the antihyperalgesic effect of levetiracetam and its mechanism of action, by examining the involvement of GABAergic, opioidergic, 5-hydroxytryptaminergic (5-HTergic) and adrenergic systems in its effect, in a rat model of inflammatory pain. ⋯ These results show that levetiracetam produced antihyperalgesia which is at least in part mediated by GABA(A), opioid, 5-HT and alpha(2)-adrenergic receptors, in an inflammatory model of pain. The efficacy of levetiracetam in this animal model of inflammatory pain suggests that it could be a potentially important agent for treating inflammatory pain conditions in humans.