Articles: hyperalgesia.
-
Although electroacupuncture (EA) therapy is used to relieve various kinds of pain, the optimal frequency and duration of EA remain unclear. We investigated the effect of varying frequency and duration of EA during hyperalgesia elicited by carrageenan-induced inflammation. ⋯ These results show that EA produces electroacupuncture analgesia of carrageenan-induced hyperalgesia. These findings also suggest that, among the frequencies and durations tested, EA at 3Hz (60 minutes) is the most suitable frequency and duration for carrageenan-induced inflammation. It seems that EA has different analgesic effects and mechanisms according to the parameters of stimulation. For EA in the clinical induction of analgesia, it is especially important that an effective frequency and duration are selected.
-
Prog. Neuropsychopharmacol. Biol. Psychiatry · Aug 2007
Intracisternal administration of mitogen-activated protein kinase inhibitors reduced mechanical allodynia following chronic constriction injury of infraorbital nerve in rats.
The present study investigated the role of mitogen-activated protein kinase (MAPK) in orofacial neuropathic pain following chronic constriction injury of the infraorbital nerve (ION-CCI). Experiments were carried out on male Sprague-Dawley rats weighing between 200 and 230 g. The ION was separated from adhering tissue, and two ligatures (5-0 chromic gut) were tied loosely around it. ⋯ Intracisternal administration with PD98059 or SB203580, a MEK inhibitor or a p38 MAPK inhibitor, respectively, significantly inhibited ION-CCI-induced mechanical allodynia in the orofacial area. These results indicate that the ION-CCI produced behavioral alterations in the orofacial area and those central MAPKs pathways contribute to orofacial neuropathic pain. Our findings suggest that MAPKs inhibitors have a potential role in treatment for orofacial neuropathic pain.
-
Based on the well established involvement of IL-1beta in inflammatory hyperalgesia, we have assessed the possible role played by IL-1beta in a murine model of bone cancer-induced pain. With this aim, we measured IL-1beta levels at the region of the tibia and the spinal cord in mice bearing a tibial osteosarcoma induced by the inoculation of NCTC 2472 cells, and we tested whether the IL-1 receptor antagonist, anakinra, inhibits some hypernociceptive reactions evoked by the neoplastic injury. Parallel experiments were performed in mice with a chronic inflammatory process (intraplantar injection of complete Freund's adjuvant, CFA). ⋯ Anakinra, intrathecally administered (1 and 10 microg) did not modify hyperalgesia of either origin. Besides, both tumoral and inflammatory mechanical allodynia remained unaltered after the administration of anakinra. In conclusion, some hyperalgesic symptoms observed in this model of bone cancer are mediated by the peripheral release of IL-1beta and may be inhibited by antagonists of type I IL-1 receptors with a similar or greater potency than symptoms produced by inflammation.
-
Using a gene expression analysis approach we found that the mRNA encoding the lysosomal cysteine protease cathepsin S (CatS) was up-regulated in rat dorsal root ganglia (DRG) following peripheral nerve injury. CatS protein was expressed in infiltrating macrophages in DRG and near the site of injury. At both sites CatS expression progressively increased from day 3 to day 14 after injury. ⋯ In nerve-injured rats, mechanical hyperalgesia, but not allodynia, was significantly reversed for up to 3h by systemic administration of a non-brain penetrant, irreversible CatS inhibitor (LHVS, 3-30 mg/kg s.c.). Depletion of peripheral macrophages by intravenous injection of liposome encapsulate clodronate (1ml, 5 mg/ml) partially reduced established mechanical hyperalgesia but not allodynia, and abolished the anti-hyperalgesic effect of LHVS. Our results demonstrate a pro-nociceptive effect of CatS and indicate that endogenous CatS released by peripheral macrophages contributes to the maintenance of neuropathic hyperalgesia following nerve injury.