Articles: hyperalgesia.
-
J. Pharmacol. Exp. Ther. · Jul 2007
Antibodies to nerve growth factor reverse established tactile allodynia in rodent models of neuropathic pain without tolerance.
A considerable body of evidence implicates endogenous nerve growth factor (NGF) in conditions in which pain is a prominent feature, including neuropathic pain. However, previous studies of NGF antagonism in animal models of neuropathic pain have examined only the prevention of hyperalgesia and allodynia after injury, whereas the more relevant issue is whether treatment can provide relief of established pain, particularly without tolerance. In the current work, we studied the effects of potent, neutralizing anti-NGF antibodies on the reversal of tactile allodynia and thermal hyperalgesia in established models of neuropathic and inflammatory pain in rats and mice. ⋯ Repeated administration of this antibody to CCI mice for 3 weeks produced a sustained reversal (days 4 to 21) of tactile allodynia that returned 5 days after the end of dosing. In conclusion, NGF seems to play a critical role in models of established neuropathic and inflammatory pain in both rats and mice, with no development of tolerance to antagonism. Antagonists of NGF, such as fully human monoclonal anti-NGF antibodies, may have therapeutic utility in analogous human pain conditions.
-
The present study was undertaken to determine the role of P2X3 receptor (P2X3R) on heat hyperalgesia in a newly developed rat model of trigeminal neuropathic pain. The unilateral infraorbital nerve (IoN) was partially ligated by 6-0 silk. To assess heat sensitivity, a vibrissal pad (VP) was placed on a hot plate and the latency until the rats withdrew their head was measured. Mechanical sensitivity of VP was also assessed by the use of von Frey filament. Both heat and mechanical hyperalgesia were observed at the VP ipsilateral to the IoN ligation. The latency to heat stimuli was prolonged after subcutaneous administration of pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, P2X1,2,3,5,7,1/5,2/3R antagonist) and 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP, P2X1,3,2/3,1/5R antagonist). The latency was shortened after administration of alpha,beta-methylene ATP (alpha,beta-meATP, P2X1,3,2/3R agonist), although no changes appeared after administration of beta,gamma-methylene-L-ATP (beta,gamma-me-L-ATP, P2X1R agonist). The protein gene product-9.5 and calcitonin gene-related peptide immunoreactive nerve fibers significantly decreased in the VP skin of ipsilateral to the IoN ligation. In the ipsilateral trigeminal ganglion, the number of P2X3-immunoreactive neurons significantly increased in the small cell group. In this study, we developed an experimental model of trigeminal neuropathic pain by partial ligation of IoN, which produced heat and mechanical hyperalgesia in the VP. Pharmacological and immunohistochemical studies revealed that the P2X3R plays an important role in the heat hyperalgesia observed in this model. ⋯ The study describes the development of a novel model of trigeminal neuropathic pain. Heat hyperalgesia in this model was inhibited by peripheral injection of P2XR antagonists. The results suggest that P2X3R is a potential target for development of a novel therapy for trigeminal neuropathic pain.
-
Brain Behav. Immun. · Jul 2007
Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats.
Paclitaxel is a commonly used cancer chemotherapy drug that frequently causes painful peripheral neuropathies. The mechanisms underlying this dose-limiting side effect are poorly understood. Growing evidence supports that proinflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor (TNF), released by activated spinal glial cells and within the dorsal root ganglia (DRG) are critical in enhancing pain in various animal models of neuropathic pain. ⋯ Moreover, IL-10 gene therapy resulted in increased IL-10 mRNA levels in lumbar DRG and meninges, measured 2 weeks after initiation of therapy, whereas paclitaxel-induced expression of IL-1, TNF, and CD11b mRNA in lumbar DRG was markedly decreased. Taken together, these data support that paclitaxel-induced neuropathic pain is mediated by proinflammatory cytokines, possibly released by activated immune cells in the DRG. We propose that targeting the production of proinflammatory cytokines by intrathecal IL-10 gene therapy may be a promising therapeutic strategy for the relief of paclitaxel-induced neuropathic pain.
-
The aim of this study was to investigate the severity and duration of postoperative pain and hyperalgesia in sheep undergoing mandibular reconstructive surgery. Stimulus-evoked sensitivity at the surgical site and an area remote from injury, the ipsilateral and contralateral forelimbs, was measured as objective indicators of altered pain processing in adult female sheep (n = 7). Responses were recorded before surgery and one, two, three, seven and 14 days afterwards. ⋯ A significant decrease in forelimb mechanical withdrawal thresholds (secondary hyperalgesia) and response thresholds to punctate stimulation of the area surrounding the surgical incision (allodynia) was detected one day after surgery and persisted for at least three days, despite intra- and postoperative analgesic treatment. Concentrations of haptoglobin were significantly increased one day post-surgery, indicating the presence of a significant acute inflammatory response, and returned to pre-surgical concentrations by seven days. These data provide a deeper insight into understanding the impact of surgery in experimental animals, and may assist in formulating more effective analgesic and antihyperalgesic treatment regimens postoperatively.
-
Trigeminal neuralgia is a disorder of paroxysmal and severely disabling facial pain and continues to be a real therapeutic challenge. At present there are few effective drugs. Here we have evaluated the effects of the synthetic cannabinoid WIN 55,212-2 on mechanical allodynia and thermal hyperalgesia in a rat model of trigeminal neuropathic pain produced by a chronic constriction injury (CCI) of the infraorbital branch of the trigeminal nerve (ION). ⋯ The effect of WIN 55,212-2 was mimicked by cannabinoid CB1 receptor agonist HU 210 and was antagonized by CB1 receptor antagonist AM 251, but not by CB2 receptor antagonist AM 630 or vanilloid receptor 1 antagonist capsazepine, suggesting the involvement of CB1 receptors. CCI-ION also induced a time-dependent upregulation of CB1 receptors primarily within the ipsilateral superficial laminae of the trigeminal caudal nucleus revealed by both Western blot and immunohistochemistry. Taken together, these results suggest that cannabinoids may be a useful therapeutic approach for the clinical management of trigeminal neuropathic pain disorders.