Articles: hyperalgesia.
-
The anterior cingulate cortex (ACC) modulates emotional responses to pain. Whereas, the caudal ACC (cACC) promotes expression of pain affect, the rostral ACC (rACC) contributes to its suppression. Both subdivisions receive glutamatergic innervation, and the present study evaluated the contribution of N-methyl-d-aspartic acid (NMDA) receptors within these subdivisions to rats' expression of pain affect. ⋯ These findings demonstrate that NMDA receptor agonism within the cACC and rACC either increases or decreases emotional responses to noxious stimulation, respectively. PERSPECTIVE: NMDA receptor activation of the rostral and caudal ACC respectively inhibited or enhanced rats' emotional response to pain. These findings mirror those obtained from human neuroimaging studies; thereby, supporting the use of this model system in evaluating the contribution of ACC to pain affect.
-
Emerging evidence has indicated that colony-stimulating factor-1 (CSF1) modulates neuroinflammation in the central nervous system and the development of neuropathic pain, while the underlying mechanism remains unknown. Here, we identified the increased expression of CSF1 derived from activated astrocytes in the ipsilateral dorsal horn in rats with spinal nerve ligation (SNL). Suppression of CSF1 expression alleviated neuroinflammation, neuronal hyperexcitability, and glutamatergic receptor subunit upregulation in the dorsal horn and improved SNL-induced pain behavior. ⋯ Furthermore, SNL induced the expression of DNA methyltransferase 3a (DNMT3a) that was associated with the hypermethylation of the miR-214-3p promoter, leading to reduced miR-214-3p expression in the model rodents. Treatment with the DNMT inhibitor zebularine significantly reduced cytosine methylation in the miR-214-3p promoter; this reduced methylation consequently increased the expression of miR-214-3p and decreased the content of CSF1 in the ipsilateral dorsal horn and, further, attenuated IL-6 production and pain behavior in rats with SNL. Together, our data indicate that the DNMT3a-mediated epigenetic suppression of miR-214-3p enhanced CSF1 production in astrocytes, which subsequently induced neuroinflammation and pain behavior in SNL model rats.