Articles: hyperalgesia.
-
Chronic muscle pain is a problem with high prevalence in clinical practice and its pharmacological treatment is difficult. There is a lack of animal models which reliably predict analgesic activity of drugs on muscle pain. Here we used intramuscular injection of tumor necrosis factor-alpha (TNF) in rats as a model of muscle pain. ⋯ In biceps muscle hyperalgesia, a significant reversal of hyperalgesia was seen with lacosamide at 10mg/kg. Significant effects were also seen for pregabalin and gabapentin at 100mg/kg. We could thus demonstrate in a rat model for myalgia that lacosamide effectively reduces muscular hyperalgesia and is somewhat more potent than gabapentin and pregabalin.
-
Clinical rheumatology · Apr 2007
ReviewCentral sensitization: a biopsychosocial explanation for chronic widespread pain in patients with fibromyalgia and chronic fatigue syndrome.
In addition to the debilitating fatigue, the majority of patients with chronic fatigue syndrome (CFS) experience chronic widespread pain. These pain complaints show the greatest overlap between CFS and fibromyalgia (FM). Although the literature provides evidence for central sensitization as cause for the musculoskeletal pain in FM, in CFS this evidence is currently lacking, despite the observed similarities in both diseases. ⋯ This hypothesis is based on the hyperalgesia and allodynia reported in CFS, on the elevated concentrations of nitric oxide presented in the blood of CFS patients, on the typical personality styles seen in CFS and on the brain abnormalities shown on brain images. To examine the present hypothesis more research is required. Further investigations could use similar protocols to those already used in studies on pain in FM like, for example, studies on temporal summation, spatial summation, the role of psychosocial aspects in chronic pain, etc.
-
Neuropathic pain behaviour is not observed in neonatal rats and tactile allodynia does not develop in the spared nerve injury (SNI) model until rats are 4 weeks of age at the time of surgery. Since activated spinal microglia are known to play a key role in neuropathic pain, we have investigated whether the microglial response to nerve injury in young rats differs from that in adults. Here we show that dorsal horn microglial activation, visualised with IBA-1 immunostaining, is significantly less in postnatal day (P) 10 rat pups than in adults, 7 days after SNI. ⋯ In addition, P10 rats developed a small but significant mechanical allodynia in response to intrathecal LPS. Intrathecal injection of cultured ATP-activated microglia, known to cause mechanical allodynia in adult rats, had no behavioural effect at P10 and only began to cause allodynia if injections were performed at P16. The results clearly demonstrate immaturity of the microglial response triggered by nerve injury in the first postnatal weeks which may explain the absence of tactile allodynia following peripheral nerve injury in young rats.
-
Catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines, has recently been implicated in the modulation of pain. Our group demonstrated that human genetic variants of COMT are predictive for the development of Temporomandibular Joint Disorder (TMJD) and are associated with heightened experimental pain sensitivity [Diatchenko, L, Slade, GD, Nackley, AG, Bhalang, K, Sigurdsson, A, Belfer, I, et al., Genetic basis for individual variations in pain perception and the development of a chronic pain condition, Hum Mol Genet 2005;14:135-43.]. Variants associated with heightened pain sensitivity produce lower COMT activity. ⋯ This phenomenon is completely blocked by the nonselective beta-adrenergic antagonist propranolol or by the combined administration of selective beta(2)- and beta(3)-adrenergic antagonists, while administration of beta(1)-adrenergic, alpha-adrenergic, or dopaminergic receptor antagonists fail to alter COMT-dependent pain sensitivity. These data provide the first direct evidence that low COMT activity leads to increased pain sensitivity via a beta(2/3)-adrenergic mechanism. These findings are of considerable clinical importance, suggesting that pain conditions resulting from low COMT activity and/or elevated catecholamine levels can be treated with pharmacological agents that block both beta(2)- and beta(3)-adrenergic receptors.
-
We describe an animal model of nociceptive sensory neuropathy induced by repeat intravenous administration of oxaliplatin in which treated animals partly reproduce the characteristic pain symptoms in oxaliplatin-treated patients. We tested the ability of 1, 2 and 4 mg/kg oxaliplatin doses injected twice-weekly for four-and-a-half consecutive weeks to induce a nociceptive peripheral neuropathy in male Sprague-Dawley rats. ⋯ The 2mg/kg oxaliplatin dose and the tail-immersion test in cold water (10 degrees C) were selected to compare pharmacological sensitivity between single administered drugs as morphine, lidocaine, carbamazepine, gabapentin and repeated administration of drugs as clomipramine, venlafaxine, calcium and magnesium solutions. Magnesium solution (90 mg/kg) and venlafaxine (7.5 mg/kg) administration induced an antinociceptive effect whereas gabapentin (300 mg/kg), clomipramine (2.5 mg/kg) and lidocaine (3 and 6 mg/kg) only induced an antiallodynic effect.