Articles: hyperalgesia.
-
Noxious C-fibre stimulation produces increased sensitivity within the injured area (primary hyperalgesia), and a surrounding zone of secondary hyperalgesia. As significant changes in nociceptive processing occur during development, we compared C-fibre induced primary and secondary hyperalgesia in rat pups aged 3, 10 and 21 postnatal (P) days. Hyperalgesia was measured by electromyography flexion reflex recordings following mustard oil or capsaicin at the site of (primary hyperalgesia), or distant to (secondary hyperalgesia) hindpaw mechanical stimuli. ⋯ These results provide evidence that primary and secondary hyperalgesia are differentially modulated during development. Furthermore, since ERK activation is required for secondary hyperalgesia, phosphoERK expression can be used to map the spatial distribution of neuronal activation in the spinal cord. Understanding changing responses to injury in the developing nervous system is important for clinical paediatric practice, and will enhance our ability to target the most effective site with a developmentally appropriate analgesic regime.
-
Experimental neurology · Mar 2007
Reversible attenuation of neuropathic-like manifestations in rats by lesions or local blocks of the intralaminar or the medial thalamic nuclei.
Thalamic somatosensory nuclei have been classified into medial and lateral systems based on their role in nociception. An imbalance between these two systems may result in abnormal somatic sensations and spontaneous pain. This study aims to investigate the effects of transient or permanent block of the medial and intralaminar nuclear groups on the neuropathic-like behavior in a rat model for mononeuropathy. ⋯ The observed results demonstrate the involvement of the medial and intralaminar thalamic nuclei in the processing of neuropathic-like manifestations, and the reversibility of the effects suggests the flexibility of the neural network involved in supraspinal processing of nociceptive information.
-
Experimental neurology · Mar 2007
The role of uninjured C-afferents and injured afferents in the generation of mechanical hypersensitivity after partial peripheral nerve injury in the rat.
This study was performed to determine which of uninjured lumbar 4 (L4) C-afferents and injured L5 afferents was important for the generation of mechanical hypersensitivity following L5 spinal nerve ligation-and-cut (SNLC, modified spinal nerve ligation) in the rat. The mechanical hypersensitivity established following L5 SNLC was completely abolished 6 weeks after local capsaicin treatment of the sciatic nerve or L4 spinal nerve. At this stage, a substantial number of capsaicin-sensitive C-afferents were eliminated without any loss of A-afferents in the L4 spinal segment, suggesting that the capsaicin-sensitive L4 C-afferents are a major contributor to L5 SNLC-produced mechanical hypersensitivity. ⋯ Also, when capsaicin-sensitive L4 C-afferents were previously eliminated, L5 SNLC still produced a partial mechanical hypersensitivity for a 1- to 2-week maintenance period with a several-day delay. This mild hypersensitivity was prevented by the previous L5 dorsal rhizotomy, implying an involvement of inputs from injured L5 afferents in the maintenance of hypersensitivity at the earlier stage. The results suggest that uninjured C-afferents, most likely C-polymodal nociceptors, are necessary for the induction and maintenance of neuropathic pain, and that afferent inputs, presumably from injured Abeta-fibers, also contribute to the maintenance at an earlier stage.
-
Recently, it has been appreciated that in addition to their antinociceptive properties, opioid analgesics also can enhance pain sensitivity (opioid-induced hyperalgesia [OIH]). OIH may enhance preexisting pain and contribute to dose escalation, tolerance, and misuse/abuse of opioids. Better information is needed to determine which opioid or opioid combinations may be least likely to produce OIH and therefore possibly represent better choices for pain management. Herein the authors have examined the hyperalgesic and antinociceptive properties of racemic methadone and its enantiomers alone and in combination with morphine in rats. Methadone is of particular interest because it possesses both micro-receptor agonist and N-methyl-d-aspartate receptor antagonist activities. ⋯ The current findings with methadone are supportive of previous findings implicating mu-opioid and N-methyl-d-aspartate receptor mechanisms in OIH. Better understanding of OIH may help in choosing the most appropriate opioids for use in the treatment of pain.
-
A patient was treated for several years with high doses of opioids for malignant pain. During a recent hospitalization, the patient's pain remained uncontrolled despite escalating doses of various opioids. ⋯ Methadone, because of its NMDA antagonist properties, offers an effective treatment for OIH. The use of methadone for analgesia is complex and should be undertaken only by practitioners who have appropriate experience.