Articles: hyperalgesia.
-
The present study investigated the role of central metabotropic glutamate receptors (mGluRs) in interleukin-1beta (IL-1beta)-induced mechanical allodynia and mirror-image mechanical allodynia in the orofacial area. Experiments were carried out on male Sprague-Dawley rats weighing 230 to 280 g. After administration of 0.01, 0.1, 1, or 10 pg of IL-1beta into a subcutaneous area of the vibrissa pad, we examined the withdrawal behavioral responses produced by 10 successive trials of an air-puff ramp pressure applied ipsilaterally or contralaterally to the IL-1beta injection site. Subcutaneous injection of IL-1beta produced mechanical allodynia and mirror-image mechanical allodynia in the orofacial area. Intracisternal administration of CPCCOEt, a mGluR1 antagonist, or MPEP, a mGluR5 antagonist, reduced IL-1beta-induced mechanical allodynia and mirror-image mechanical allodynia. Intracisternal administration of APDC, a group II mGluR agonist, or L-AP4, a group III mGluR agonist, reduced both IL-1beta-induced mechanical allodynia and mirror-image mechanical allodynia. The antiallodynic effect, induced by APDC or L-AP4, was blocked by intracisternal pretreatment with LY341495, a group II mGluR antagonist, or CPPG, a group III mGluR antagonist. These results suggest that groups I, II, and III mGluRs differentially modulated IL-1beta-induced mechanical allodynia, as well as mirror-image mechanical allodynia, in the orofacial area. ⋯ Central group I mGluR antagonists and groups II and III mGluR agonists modulate IL-1beta-induced mechanical allodynia and mirror-image mechanical allodynia in the orofacial area. Therefore, the central application of group I mGluR antagonists or groups II and III mGluR agonists might be of therapeutic value in treating pain disorder.
-
Molecular pharmacology · Oct 2006
Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-D-aspartate-dependent mechanisms.
Molecular mechanisms underlying diabetes-induced painful neuropathy are poorly understood. We have demonstrated, in rats with streptozotocin-induced diabetes, that mechanical hyperalgesia, a common symptom of diabetic neuropathy, was correlated with an early increase in extracellular signal-regulated protein kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) phosphorylation in the spinal cord and dorsal root ganglion at 3 weeks after induction of diabetes. This change was specific to hyperalgesia because nonhyperalgesic rats failed to have such an increase. ⋯ To characterize the cellular events upstream of MAPKs, we have examined the role of the NMDA receptor known to be implicated in pain hypersensitivity. The prolonged blockade of this receptor during 7 days by (5R, 10S)-(+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]-cyclohepten-5-10-imine hydrogen maleate (MK801; 5 microg/rat/day, i.t.), a noncompetitive NMDA receptor antagonist, reversed hyperalgesia developed by diabetic rats and blocked phosphorylation of all MAPKs. These results demonstrate for the first time that NMDA receptor-dependent phosphorylation of MAPKs in spinal cord neurons and microglia contribute to the establishment and longterm maintenance of painful diabetic hyperalgesia and that these kinases represent potential targets for pain therapy.
-
S100A9 protein induces anti-nociception in rodents, in different experimental models of inflammatory pain. Herein, we investigated the effects of a fragment of the C-terminus of S100A9 (mS100A9p), on the hyperalgesia induced by serine proteases, through the activation of protease-activated receptor-2 (PAR2). ⋯ These data demonstrate that mS100A9p interferes with mechanisms involved in nociception and hyperalgesia and modulates, possibly directly on sensory neurons, the PAR2-induced nociceptive signal.
-
The analgesic and anti-hyperalgesic effects of cannabinoid- and vanilloid-like compounds, plus the fatty acid amide hydrolase (FAAH) inhibitor Cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597), and acetaminophen, were evaluated in the phenyl-p-quinone (PPQ) pain model, using different routes of administration in combination with opioid and cannabinoid receptor antagonists. All the compounds tested produced analgesic effects. Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and (R)-(+)-arachidonyl-1'-hydroxy-2'-propylamide ((R)-methanandamide) were active by three routes of administration: i.p., s.c. and, p.o. ⋯ None of the cannabinoid or opioid receptor antagonists tested blocked the compounds evaluated, with two exceptions: the antinociceptive effects of Delta(9)-THC and URB597 were completely blocked by SR141716A, a cannabinoid CB(1) receptor antagonist. Western immunoassays performed using three opioid receptor antibodies, a cannabinoid CB(1) receptor antibody and a transient receptor potential vanilloid type 1(TRPV(1)) receptor antibody, yielded no change in receptor protein levels after short-term arvanil, (R)-methanandamide or Delta(9)-THC administration. These data suggest that all the compounds tested, except Delta(9)-THC and URB597, produced analgesia via a non-cannabinoid CB(1), non-cannabinoid CB(2) pain pathway not yet identified.
-
Comparative Study
Secondary hyperalgesia in the monoarthritic rat is mediated by GABAB and NK1 receptors of spinal dorsal horn neurons: a behavior and c-fos study.
Secondary hyperalgesia in the monoarthritic rat is accompanied by a decrease in nociceptive activation of spinal neurons expressing GABA(B) receptors and by the opposite effect in the cells expressing neurokinin 1 (NK1)-receptors. In order to ascertain the relative role of each receptor, the effects of intrathecal administration of SP-saporin (SP-SAP), baclofen or both were evaluated, using a model of secondary hyperalgesia that consists of mechanical stimulation of the hindlimb skin close to an inflamed joint. Four days after the induction of monoarthritis by intraarticular injection of Complete Freund's Adjuvant (CFA), a cannula was implanted at T(13)-L(1) level and 10 microl of saline or SP-SAP (10(-6) M) were intrathecally (i.t.) injected. ⋯ In segments L(2)-L(3), the spinal area that receives input from the stimulated skin close to the inflamed joint, the numbers of Fos-immunoreactive neurons were reduced after the three treatments both in the superficial and deep dorsal horn. In segments T(13)-L(1), the numbers of Fos-immunoreactive neurons were significantly reduced after treatment with SP-SAP plus baclofen in both dorsal horn regions, and in the deep dorsal horn after baclofen treatment. We conclude that both GABA(B) and NK1 receptors of spinal dorsal horn neurons participate in secondary hyperalgesia in the monoarthritic rat, although the decrease in GABA inhibition appears to play a more important role than the increase in SP-mediated effects.