Articles: hyperalgesia.
-
About half of patients with spinal cord injury (SCI) develop debilitating central neuropathic pain (CNP), with no effective treatments. Thus, effective, safe, and novel therapies are needed urgently. Previously, docosahexaenoic acid (DHA) was reported to confer neuroprotection in preclinical SCI models. ⋯ Spinal microgliosis, a known hallmark associated with neuropathic pain behaviours, was reduced by DHA treatments. Finally, we revealed novel potential roles of peroxisome proliferator-activated and retinoid X receptors and docosahexaenoyl ethanolamide (DHA's metabolite) in mediating DHA's effects on microglial activation. Our findings, coupled with the excellent long-term clinical safety of DHA even in surgical and critically ill patients, suggest that systemic DHA treatment is a translatable, effective, safe, and novel approach for preventing and managing SCI-CNP.
-
To investigate central sensitization (CS) in cluster headache (CH) and to evaluate its relationship with disease characteristics and psychological comorbidities. ⋯ Our findings show that patients with CH have lower PPT levels at cranial and extracranial points, suggesting, as in other primary headaches, the presence of CS. We have also found a high prevalence of psychiatric comorbidities that correlate with the length and frequency of attacks. These findings highlight the importance of a multidisciplinary approach to the treatment of patients with CH.
-
Opioid use for chronic pain is limited by severe central adverse effects. We examined whether activating mu-opioid receptors (MORs) in the peripheral nervous system attenuates spinal cord injury (SCI) pain-like behavior in mice. We produced a contusive SCI at the T10 vertebral level and examined motor and sensory dysfunction for 6 weeks. ⋯ In vivo calcium imaging showed that DALDA (1, 10 mg/kg, s.c.) inhibited responses of small dorsal root ganglion neurons to noxious heat stimulation in Pirt-GCaMP6s mice after SCI. Western blot analysis showed upregulation of MOR in the lumbar spinal cord and sciatic nerves at 6 weeks after SCI. Our findings suggest that peripherally acting MOR agonist may inhibit heat hypersensitivity below the injury level with minimal adverse effects.
-
Homocysteinemia is a metabolic condition characterized by abnormally high level of homocysteine in the blood and is considered to be a risk factor for peripheral neuropathy. However, the cellular mechanisms underlying toxic effects of homocysteine on the processing of peripheral nociception have not yet been investigated comprehensively. ⋯ In addition, our in vitro studies indicate that homocysteine enhances recombinant T-type calcium currents by promoting the recycling of Cav3.2 channels back to the plasma membrane through a protein kinase C-dependent signaling pathway that requires the direct phosphorylation of Cav3.2 at specific loci. Altogether, these results reveal an unrecognized signaling pathway that modulates the expression of T-type calcium channels, and may potentially contribute to the development of peripheral neuropathy associated with homocysteinemia.
-
Complex regional pain syndrome (CRPS) is a posttraumatic pain condition with an incompletely understood pathophysiological basis. Here, we have examined the cellular basis of pain in CRPS using behavioral and electrophysiological methods in mice treated with IgG from CRPS patients, in combination with a paw incision. Mice were subjected to a hind paw skin-muscle incision alone, or in combination with administration of IgG purified from either healthy control subjects or patients with persistent CRPS. ⋯ Studies of IgG preparations pooled from patient cohorts (n = 26-27) show that pathological autoantibodies are present in the wider population of patients with persistent CRPS, and that patients with more severe pain have higher effective autoantibody titres than patients with moderate pain intensity. Electrophysiological investigation of skin-nerve preparations from mice treated with CRPS IgG from a single patient identified both a significantly increased evoked impulse activity in A and C nociceptors, and an increased spontaneous impulse rate in the intact saphenous nerve. Our results show that painful hypersensitivity in persistent CRPS is maintained by autoantibodies, which act by sensitizing A and C nociceptors.