Articles: hyperalgesia.
-
Comparative Study
Opioid receptor desensitization contributes to thermal hyperalgesia in infant rats.
Central nociceptive processing includes spinal and supraspinal neurons, but the supraspinal mechanisms mediating changes in pain threshold remain unclear. We investigated the role of forebrain neurons in capsaicin-induced hyperalgesia. Long-Evans rat pups at 21 days were randomized to undisturbed control group, or to receive tactile stimulation, saline injection (0.9% w/v) or capsaicin injection (0.01% w/v) applied to each paw at hourly intervals. ⋯ Dose responses to systemic morphine were also reduced in the capsaicin group compared to the tactile group (P < 0.05). Capsaicin-induced hyperalgesia in 21-day-old rats was associated with an uncoupling of micro-opioid receptors in the forebrain. Opioid receptor desensitization in the forebrain may reduce opioidergic inputs to the descending inhibitory controls, associated with behavioral hyperalgesia and reduced responsiveness to morphine analgesia in capsaicin-injected young rats.
-
Intrathecal adenosine has antinociceptive effects under conditions of hypersensitivity. T62 (2-amino-3-(4-chlorobenzoyl)-5,6,7,8-tetrahydrobenzothiophen) is an allosteric adenosine receptor modulator that enhances adenosine binding to the A1 receptor. Intrathecal T62 reduces hypersensitivity to mechanical stimuli in a rat model of neuropathic pain by a circuit that totally relies on activation of alpha2 adrenoceptors. Here, the authors tested whether this same dependence was present in the acute setting of hypersensitivity after surgery. ⋯ Intrathecal T62 is effective for postoperative hypersensitivity. The synergy of T62 with clonidine and its only partial antagonism by idazoxan suggest that T62 does not rely entirely on activation of alpha2 adrenoceptors. These results indicate that, after surgery, T62 acts via a mechanism different from that of spinal nerve ligation, a model of chronic neuropathic pain.
-
Ann Fr Anesth Reanim · May 2004
Case Reports[Increase in bispectral index induced by antihyperalgesic dose of ketamine].
We report two cases of sudden increase in Bispectral Index (BIS) after the injection of low-dose ketamine for the prevention of postoperative hyperalgesia. The two patients were anaesthetised with a continuous infusion of remifentanil associated with propofol for one and isoflurane for the other. ⋯ The BIS value returned progressively to 40-50 despite no increase in target concentration. None of the patients complained of intra-operative recall.
-
Extracellular signal-regulated protein kinase (ERK) is a mitogen-activated protein kinase (MAPK) that mediates intracellular signal transduction in response to a variety of stimuli. ERK is involved in cell proliferation and differentiation and in neuronal plasticity, including long-term potentiation, learning, and memory. Here, we present recently accumulating data about the roles of MAPK pathways in mediating the neuronal plasticity that contributes to pain hypersensitivity. ⋯ On the other hand, peripheral inflammation and axotomy also induces p38 MAPK activation in DRG neurons. Taken together, these findings indicate that activation of MAPK in nociceptive neurons may participate in generating pain hypersensitivity through transcription-dependent and -independent means. Thus, inhibition of MAPK signaling in the primary afferents, as well as in the spinal cord, may provide a fruitful strategy for the development of novel analgesics.
-
Comparative Study
Paclitaxel-induced neuropathic hypersensitivity in mice: responses in 10 inbred mouse strains.
Mechanical allodynia, or hypersensitivity to tactile stimuli, is a frequent clinical symptom of neuropathy. Large interindividual differences have been observed in neuropathic pain, both in susceptibility to its development and in its severity. Identification of genetic factors relevant to this variability would be of obvious utility. ⋯ Using sensitive DBA/2 mice and a resistant strain, C57BL/6J, for comparison, we further characterized the paclitaxel model in mice by examining cold allodynia and thermal hyperalgesia. Both strains displayed equivalent cold allodynia but neither strain developed thermal hyperalgesia. The present data confirm a genetic component in mechanical allodynia using this model, while dissociating mechanical hypersensitivity from other pain modalities.