Articles: hyperalgesia.
-
Nocebo hyperalgesia is an increase in pain through the expectation of such an increase as a consequence of a sham treatment. Nocebo hyperalgesia can be induced by observation of a model demonstrating increased pain via verbal pain ratings. The aim of the present study was to investigate whether observing natural pain behavior, such as facial pain expressions, can also induce nocebo responses. ⋯ For the first time, it was shown that watching a model demonstrating pain through facial expressions induced nocebo hyperalgesia. As we mostly express pain through natural pain behavior rather than through pain ratings, this paradigm extends our knowledge of observational learning about pain and may have implications for contexts in which persons watch others undergo painful procedures.
-
Am. J. Med. Genet. B Neuropsychiatr. Genet. · Sep 2019
Genes known to escape X chromosome inactivation predict co-morbid chronic musculoskeletal pain and posttraumatic stress symptom development in women following trauma exposure.
Co-morbid chronic musculoskeletal pain (CMSP) and posttraumatic stress symptoms (PTSS) are frequent sequelae of motor vehicle collision, are associated with greater disability than either outcome alone, and are more prevalent in women than men. In the current study we assessed for evidence that gene transcripts originating from the X chromosome contribute to sex differences in vulnerability to CMSP and PTSS after motor vehicle collision. Nested samples were drawn from a longitudinal study of African American individuals, and CMSP (0-10 numeric rating scale) and PTSS (impact of events scale, revised) outcomes were assessed 6 months following motor vehicle collision. ⋯ Secondary analyses assessing gene ontology relationships between these genes identified an enrichment in genes known to influence neuronal plasticity. Further, the relationship of expression of two critical regulators of X chromosome inactivation, X-inactive specific transcript (XIST) and Yin Yang 1 (YY1), was different in women developing CMSP and PTSS. Together, these data suggest that X chromosome genes that escape inactivation may contribute to sex differences in vulnerability to CMSP and PTSS after motor vehicle collision.
-
Vincristine (VCR) is a well-known anticancer drug which frequently induced painful neuropathy and impairs the quality of life of patients. The present study was designed to investigate the alleviative potential of a novel cyclohexenone derivative (CHD), i.e., ethyl 6-(4-methoxyphenyl)-2-oxo-4-phenylcyclohexe-3-enecarboxylate, against VCR-induced neuropathic pain in mice model. VCR was administered intraperitoneally for 10 days in two cycles to induce neuropathic pain. ⋯ CHD significantly augmented the paw withdrawal duration (PWD) in paw cold allodynia, while the same compound only increased the paw elevation and paw licking in the delayed phase of formalin nociception. Moreover, CHD significantly inhibited the DPPH free radical scavenging action (IC50 = 56), butylated hydroxytoluene (BHT) (IC50 = 39), and ascorbic acid (IC50 = 2.93). In conclusion, CHD exhibited a profile of potential attenuative effect against the VCR-induced neuropathic pain which might be attributed to its possible antinociceptive and antioxidant effect.
-
Chemotherapy-induced peripheral neuropathy (CIPN) remains a pressing clinical problem; however, our understanding of sexual dimorphism in CIPN remains unclear. Emerging studies indicate a sex-dimorphic role of Toll-like receptor 4 (TLR4) in driving neuropathic pain. In this study, we examined the role of TLR9 in CIPN induced by paclitaxel in WT and Tlr9 mutant mice of both sexes. ⋯ Here, we show that macrophage TLR9 signaling promotes CIPN in male mice only. This study suggests that pathways in macrophages may be sex-dimorphic in CIPN. Our findings provide new insights into the role of macrophage signaling mechanisms underlying sex dimorphism in CIPN, which may inspire the development of more precise and effective therapies.
-
Trigeminal neuropathic pain (TGN) is an attacking, abrupt, electric-shock headache involving abnormal cortical activity. The neural mechanism underlying TGN remains elusive. In this study, we explored the role of microglia in the primary somatosensory barrel cortex (S1BF), which is a critical region for TGN, of a mouse model of TGN that displayed significant pain-related behaviors. ⋯ In addition, we found that microglia in the S1BF (microgliaS1BF) were significantly activated, with density and morphology changes. Intraperitoneal administration of minocycline, a microglia inhibitor, attenuated pain sensitization, and decreased GluS1BF neuronal activity. Together, these findings demonstrate the putative importance of microglia as a key regulator in TGN through actions on GluS1BF neuronal adaptation.