Articles: hyperalgesia.
-
Pharmacol. Biochem. Behav. · Sep 2002
Antisense oligonucleotide knockdown of mGluR1 alleviates hyperalgesia and allodynia associated with chronic inflammation.
Chronic inflammation induced by injection of complete Freund's adjuvant (CFA) into one hindpaw elicits thermal hyperalgesia and mechanical allodynia in the injected paw. Metabotropic glutamate receptors (mGluRs) have been implicated in dorsal horn neuronal nociceptive responses and pain associated with short-term inflammation. The goal of the present study was to assess the role of mGluR1 in the hyperalgesia and allodynia associated with the CFA model of chronic inflammation. ⋯ When intrathecal infusion of mGluR1 AS oligonucleotide (50 microg/day) began prior to CFA injection, mechanical allodynia was attenuated from Days 1 to 8 following CFA injection, whereas heat hyperalgesia was attenuated on Day 1 and then from Days 4 to 8. When intrathecal infusion of mGluR1 AS oligonucleotide was begun 2 days after CFA injection, both mechanical allodynia and heat hyperalgesia were attenuated at all time points following the oligonucleotide infusion. Thus, the present data suggest a role for mGluR1 in persistent inflammatory nociception.
-
Musculoskeletal pains are often characterised by referred pain and hyperalgesia. The aim of the present study was to examine the sensitivity to pressure and pinprick at sites ipsi- and contralateral to capsaicin-induced pain in the tibialis anterior (TA) muscle. Visual analogue scale (VAS) scores of the sensation to sub- and supra-pain threshold stimuli by pressure and pinprick were recorded before, during and after experimental muscle pain. ⋯ Thus, the generalised decreased sensitivity may reflect activation of non-opioid endogenous pain inhibitory systems. The lack of change in sensitivity at some sites could indicate a competitive balance between excitatory and inhibitory mechanisms. The deep peroneal nerve specifically innervates both the TA muscle and the only site of hyperalgesia indicating spatial summation of afferent activity from these structures.
-
A differential role for metabotropic glutamate receptors (mGluRs) in spinal nociception in normal animals has previously been identified. The present study examined the contribution of group I and group II mGluRs to the development and maintenance of inflammatory hyperalgesia produced by unilateral intradermal injection of carrageenan into the lower forelimb in sheep. Carrageenan (7.5 mg in 500 micro l) produced a significant bilateral reduction in forelimb mechanical withdrawal thresholds. ⋯ The magnitude of the analgesic response, assessed by the area under the response curve, was significantly greater than that produced by LCCG-I in normal animals. These data demonstrate that the development and maintenance of inflammatory hyperalgesia is dependent on activation of group I mGluRs in spinal cord. In addition, the analgesic and anti-hyperalgesic actions of group II mGluRs suggest that these receptors play a crucial role in modulating acute inflammatory hyperalgesia.
-
GluR5 receptors modulate spinal nociception, however, their role in nociceptive hypersensitivity remains unclear. Using behavioural and electrophysiological approaches, we have investigated several GluR5 ligands in acute and hyperalgesic states. Furthermore, as the GABAergic system plays a role in GluR5 mediated effects in the brain, we also analysed the interaction between GluR5 agonists and GABA(A) antagonists in the spinal cord. ⋯ We conclude that selective GluR5 kainate receptor activation inhibits spinal nociception and its sensitisation caused by ongoing peripheral nociceptive drive. GABA(A) receptors are involved in tonic inhibition of segmental responses, but contribute to their sensitisation by repetitive primary afferent stimulation. Furthermore, there is a cross-talk between the two systems, presumably due to GluR5-mediated activation of GABAergic inhibitory interneurones in the spinal cord.