Articles: hyperalgesia.
-
Complex regional pain syndromes can be relieved by sympathetic blockage. The mechanisms of sympathetically maintained pain (SMP) are unclear. We aimed to establish the effect of physiological sympathetic cutaneous vasoconstrictor activity on pain and hyperalgesia in patients with complex regional pain syndromes. ⋯ We have shown that in complex regional pain syndromes with SMP, physiological activation of cutaneous vasoconstrictor neurons projecting to the painful arm or leg enhances spontaneous pain and hyperalgesia. We postulate that there is a pathological interaction between sympathetic and afferent neurons within the skin.
-
Recent research has focused on prostaglandins in the central nervous system and their contribution to hyperalgesia and allodynia. This study sought to establish whether neurokinin-1 (NK-1) receptors and glutamate receptors are involved in the hyperalgesic and allodynic effects of spinally administered prostaglandin E2 (PGE2) in rats, and also to determine if the same receptors are involved the hyperalgesia induced by intraplantar administration of zymosan, an inflammatory agent which is known to evoke spinal PGE2 release. Spinal application of antagonists of the NK-1 receptor, the -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate glutamate or metabotropic glutamate receptor significantly attenuated the decrease in mechanical paw withdrawal response thresholds produced by either spinal administration of PGE2 or intraplantar administration of zymosan. ⋯ These results suggest that both PGE2-induced and zymosan-induced mechanical hyperalgesia are mediated in part through activation of NK-1, AMPA/kainate and metabotropic glutamate receptors. PGE2-induced, but not zymosan-induced, thermal hyperalgesia is mediated in part by activation of NMDA, AMPA/kainate and metabotropic glutamate receptors. Activation of both NMDA and AMPA/kainate receptors contribute to PGE2-induced allodynia.
-
The sympathetic system (SNS) is considered to be a major component of the neurogenic contribution to inflammation and hyperalgesia. We have investigated the role of the SNS in the local inflammatory pain induced by intraplantar (i.pl) injections of bacterial endotoxin (ET). Treatment of rats with an alpha-adrenoceptor antagonist (phentolamine, 0.25-1 mg/kg, i.p.), a beta-adrenoceptor antagonist (propranolol, 1-10 mg/kg, p.o.) or a sympathetic neuron-blocking agent (guanethedine, 30 mg/kg, s.c.) resulted in a dose-dependent reduction of the thermal hyperalgesia induced by ET. ⋯ IL-1 beta was resistant to all of the sympatholytic treatments. We conclude that the SNS can contribute to the local inflammation and hyperalgesia following injection of ET. The resistance to sympatholytics shown by IL-1 beta, known to play a key role in the inflammatory cascade, suggests that ET can initiate inflammation and hyperalgesia independently of peripheral and central sympathetic mechanisms.
-
Descending influences from the rostral medial medulla (RMM) contribute to secondary hyperalgesia in persistent inflammatory, neuropathic, and visceral pain models. The current study examined if descending inhibition or facilitation from the RMM modulates primary and secondary hyperalgesia after incision in the rat hind limb. ⋯ Primary and secondary hyperalgesia after an incision were not modulated by descending influence from the RMM. The lack of contribution of descending facilitatory influences from the RMM to secondary hyperalgesia after gastrocnemius incision supports the notion that incision-induced pain involves dissimilar mechanisms compared with inflammatory and neuropathic pain.
-
Cannabinoids have previously been shown to possess analgesic properties in a model of visceral hyperalgesia in which the neurotrophin, nerve growth factor (NGF), plays a pivotal role. The purpose of this study was to investigate the antihyperalgesic effects of two cannabinoids in NGF-evoked visceral hyperalgesia in order to test the hypothesis that endocannabinoids may modulate the NGF-driven elements of inflammatory hyperalgesia. Intra-vesical installation of NGF replicates many features of visceral hyperalgesia, including a bladder hyper-reflexia and increased expression of the immediate early gene c fos in the spinal cord. ⋯ However, neither CB1 nor CB2 receptor antagonists altered the action of anandamide. PEA-induced reduction in Fos expression was abrogated by SR144528. These data add to the growing evidence of a therapeutic potential for cannabinoids, and support the hypothesis that the endogenous cannabinoid system modulates the NGF-mediated components of inflammatory processes.