Articles: hyperalgesia.
-
Pretreatment with intraperitoneal (i.p.) indomethacin was used to determine whether indomethacin preferentially affected the development of edema and hyperalgesia to thermal and mechanical stimuli produced by injection of zymosan in the ispsilateral hindpaw of the rat. Indomethacin also was delivered intrathecally (i.t.) either 30 minutes before or 4 hours after intraplantar zymosan to determine whether spinal prostaglandin production was important for the induction and/or maintenance of hyperalgesia. Zymosan alone produced a robust edema, a monophasic mechanical hyperalgesia, and a biphasic thermal hyperalgesia in the ipsilateral hindpaw. ⋯ Once hyperalgesia was established, i.t. indomethacin also attenuated the mechanical hyperalgesia whereas it had no effect on thermal hyperalgesia or edema. These data suggest that peripheral, but not spinal prostaglandins contribute to the edema and development of thermal hyperalgesia produced by zymosan. In contrast, spinal prostaglandins contribute to the development and maintenance of mechanical hyperalgesia.
-
Clinical Trial Controlled Clinical Trial
Hyperalgesic responses in methadone maintenance patients.
Opioid substitution treatment for dependence may alter sensitivity to pain. Previous studies on pain sensitivity in methadone maintenance patients have yielded contradictory results. This study compared nociceptive responses between 16 patients on stable, once daily, doses of methadone and 16 matched control subjects. ⋯ Pain tolerance to pain detection ratios for methadone patients were significantly lower than controls for the cold pressor test at 0 and 3 h, and for electrical stimulation at 0 h only. In summary, the relative pain sensitivity of methadone maintenance patients is determined by the nature of the nociceptive stimulus (e.g. cold pressor test versus electrical stimulation), the plasma methadone concentration (trough versus peak plasma concentration), and whether thresholds are determined for detection of pain or pain tolerance. Although responding to changes in plasma methadone concentration, maintenance patients are markedly hyperalgesic to pain induced by the cold pressor test.
-
Randomized Controlled Trial Clinical Trial
Heat, but not mechanical hyperalgesia, following adrenergic injections in normal human skin.
The development of adrenergic sensitivity in nociceptors has been suggested as a mechanism of neuropathic pain. We sought to determine if nociceptors in the skin of normal subjects exhibit adrenergic sensitivity. We investigated the effects of intradermal administration of norepinephrine, phenylephrine, and brimonidine on heat pain sensitivity. ⋯ In addition, occlusion of blood flow with a blood pressure cuff did not lead to heat hyperalgesia. Thus, the heat hyperalgesia observed with the adrenergic agonists is not due to a decrease in perfusion associated with the injection. These results indicate that alpha(1)- and alpha(2)-adrenoceptor-mediated mechanisms may play a role in sensitization of nociceptors to heat stimuli in normal skin.
-
Randomized Controlled Trial Clinical Trial
Dextromethorphan attenuation of postoperative pain and primary and secondary thermal hyperalgesia.
To determine the effect of 90 mg dextromethorphan (DM) p.o. vs placebo 90 min preoperatively, on the immediate and delayed postoperative course. ⋯ Compared with placebo, DM enabled reduction of postoperative analgesics consumption, improved well-being, and reduced sedation, pain intensity and primary and secondary thermal hyperalgesia.
-
J. Pharmacol. Exp. Ther. · Feb 2001
Effects of A-134974, a novel adenosine kinase inhibitor, on carrageenan-induced inflammatory hyperalgesia and locomotor activity in rats: evaluation of the sites of action.
The present study investigated 1) antihyperalgesic actions of a novel and selective adenosine kinase (AK) inhibitor, A-134974 (IC(50) = 60 pM), in the carrageenan model of thermal hyperalgesia; 2) effects of A-134974 on locomotor activity; and 3) relative contributions of supraspinal, spinal, and peripheral sites to the actions of A-134974. Systemic A-134974 (i.p.) dose dependently reduced hyperalgesia (ED(50) = 1 micromol/kg) and at higher doses, reduced locomotor activity (ED(50) = 16 micromol/kg). Administration of A-134974 intrathecally (i.t.) was more potent (ED(50) = 6 nmol) at producing antihyperalgesia than delivering the compound by intracerebralventricular (ED(50) = 100 nmol, i.c.v.) or intraplantar (ED(50) >300 nmol) routes. ⋯ In the locomotor assay, i.t.-injected THEO did not antagonize hypomobility caused by systemic or i.t. administration of A-134974. However, i.c.v. infusion of THEO did block the hypomotive actions of i.c.v.-, i.t.-, and i.p.-administered A-134974. These data demonstrate that the novel AK inhibitor A-134974 potently reduces thermal hyperalgesia primarily through interactions with spinal sites, whereas its ability to depress locomotor activity is predominantly mediated by supraspinal sites.