Articles: hyperalgesia.
-
Our previous electrophysiologic studies on nociceptive types of dorsal root ganglion (DRG) neurons in culture demonstrated that extremely low fM-nM concentrations of morphine and many other bimodally-acting mu, delta and kappa opioid agonists can elicit direct excitatory opioid receptor-mediated effects, whereas higher (microM) opioid concentrations evoked inhibitory effects. Cotreatment with pM naloxone or naltrexone (NTX) plus fM-nM morphine blocked the excitatory effects and unmasked potent inhibitory effects of these low opioid concentrations. ⋯ The consonance of our in vitro and in vivo evidence indicates that doses of morphine far below those currently required for clinical treatment of pain may become effective when opioid hyperalgesic effects are blocked by coadministration of appropriately low doses of opioid antagonists. This low-dose-morphine cotreatment procedure should markedly attenuate morphine tolerance, dependence and other aversive side-effects.
-
The heat--capsaicin sensitization model was developed as a noninvasive and noninjurious human experimental pain model. The sequential application of moderate intensity thermal and topical chemical stimuli produces stable and long-lasting areas of cutaneous secondary hyperalgesia. The aim of the present study was to validate the heat--capsaicin sensitization model as a tool for testing analgesic drug efficacy. Responsivity of model-associated measures was tested with remifentanil, a potent and ultrashort acting mu-opioid agonist. ⋯ Using the heat-capsaicin sensitization model, opioid analgesia and suppression of secondary hyperalgesia was reliably demonstrated without skin injury.
-
We have addressed the molecular mechanism(s) of hyperalgesia, which depends on increased excitability of dorsal horn neurons and on sensitization of primary afferent nociceptors, during peripheral inflammation. Following unilateral adjuvant-induced inflammation in the rat hind paw, time-course changes in behavioral hyperalgesia and functional activities of Ca2+/phospholipid-dependent protein kinase C isozymes were examined. Inflammation was characterized by increase in paw diameter, and behavioral hyperalgesia was quantified as paw withdrawal latency from a radiant heat source. ⋯ Quantitative immunohistochemical analyses demonstrated intensified protein kinase CbetaII-like immunoreactivity on the side of the spinal cord ipsilateral to the inflammation. Time-course for increases in the activity of membrane-associated protein kinase CbetaII, and in intensity of protein kinase CbetaII-immunoreactivity, paralleled inflammation-mediated changes in paw withdrawal latency and paw diameter. Our findings indicate an apparent involvement of protein kinase CbetaII isozyme specifically in the molecular mechanism(s) of thermal hyperalgesia.
-
Previous studies have demonstrated that the metabotropic glutamate receptor subtype 5 (mGlu5 receptor) is expressed in the cell bodies of rat primary afferent neurones. We have further investigated the function and expression of mGlu5 receptors in primary afferent neurones, and their role in inflammatory nociception. Freund's complete adjuvant-induced inflammatory hyperalgesia of the rat hind paw was significantly reduced by intraplantar, but not by intracerebroventricular or intrathecal microinjection of the selective mGlu5 receptor antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP). ⋯ Immunohistochemical experiments revealed the co-expression of mGlu5 receptor protein and betaIII tubulin in skin from naive rats, indicating the constitutive expression of mGlu5 receptors on peripheral neurones. Double-labelling of adult rat DRG cells with mGlu5 receptor and vanilloid receptor subtype 1 antisera also supports the expression of mGlu5 receptors on peripheral nociceptive afferents. These results suggest that mGlu5 receptors expressed on the peripheral terminals of sensory neurones are involved in nociceptive processes and contribute to the hyperalgesia associated with inflammation.
-
Randomized Controlled Trial Multicenter Study Clinical Trial
Systemic adenosine infusion reduces the area of tactile allodynia in neuropathic pain following peripheral nerve injury: a multi-centre, placebo-controlled study.
Systemic adenosine has been shown in earlier case reports and a small placebo-controlled study to reduce pathological sensory dysfunction such as tactile allodynia in neuropathic pain. To evaluate this further, the effects of systemic adenosine infusion (50 microg/kg/min for 60 min) on tactile sensory dysfunction and pain was evaluated in 26 patients suffering peripheral neuropathic pain characterized by dynamic tactile allodynia. A randomized, cross-over, double-blind, placebo-controlled technique was used in this multi-centre study. ⋯ The area of dynamic tactile allodynia was significantly reduced by adenosine compared with placebo (p=0.043), but spontaneous pain and tactile pain threshold were not significantly improved compared with the effects of placebo treatment. As a secondary outcome, a higher incidence of positive subjective effects on the clinical pain condition, in a few cases with long duration (several months), following adenosine treatment was found when the global effect of respective treatment was assessed (p=0.028). The results demonstrate involvement of adenosine receptor-sensitive pain mechanisms in some aspects of the sensory dysfunction often found in neuropathic pain.