Articles: hyperalgesia.
-
The Randall-Selitto paradigm (maximal tolerated pressure externally applied by a mechanical device) was used to develop a rat model of localized inflammatory hyperalgesia in order to compare the analgesic effects of bradykinin (BK) B1 and B2 receptor antagonists and of a non-steroidal anti-inflammatory drug (NSAID). Intra-plantar injection of zymosan (12.5 mg per paw) induced a considerable inflammation as evidenced from gross and histological evaluation and a mechanical hyperalgesia at 6 h. The contra-lateral paw of zymosan-treated animals or saline vehicle-injected paws did not exhibit a decreased pressure tolerance, relative to pre-injection measurements. ⋯ The kinin B1 receptor antagonists [Leu8]des-Arg9-BK (3-30 nmol/kg) and R-715 (100 nmol/kg), the B2 receptor antagonists Hoe 140 (15 nmol/kg) and LF 16.0687 (3 and 10 mg/kg), as well as the NSAID diclofenac sodium (1 and 3 mg/kg) significantly reversed zymosan-induced hyperalgesia. We conclude that zymosan-induced hyperalgesia is a model suitable for the rapid evaluation of analgesic drugs with a peripheral site of action interfering either with kinin receptors or with prostanoid formation. In this regard, results of the present study confirm that blocking kinin B1 receptors is a novel approach for treatment of inflammatory pain.
-
It has been reported that mu-opioid receptor activation leads to a sustained increase in glutamate synaptic effectiveness at the N-methyl-D-aspartate (NMDA) receptor level, a system associated with central hypersensitivity to pain. One hypothesis is that postoperative pain may result partly from the activation of NMDA pain facilitatory processes induced by opiate treatment per se. The authors tested here the effectiveness of the opiate analgesic fentanyl for eliciting a delayed enhancement in pain sensitivity. ⋯ Fentanyl activates NMDA pain facilitatory processes, which oppose analgesia and lead to long-lasting enhancement in pain sensitivity.
-
Ziconotide (SNX-111), a selective blocker of neuronal N-type voltage-sensitive calcium channels, is antinociceptive when it is administered intrathecally. It is currently under clinical investigation for the treatment of malignant and non-malignant pain syndromes. The present study was undertaken to compare and contrast antinociceptive properties of ziconotide, morphine and clonidine in a rat model of post-operative pain. ⋯ Intravenous bolus injection of 3 mg/kg (1.1 micromol/kg) ziconotide, administered either before or after incisional surgery, had no effect on thermal pain thresholds measured in either the injured or normal hindpaw. In contrast, intraperitoneal injections of 2 mg/kg (2.6 micromol/kg) morphine and 2.5 mg/kg (9.4 micromol/kg) clonidine blocked heat hyperalgesia in the injured hindpaw; morphine, but not clonidine, also elevated thermal (heat) nociceptive response thresholds in the normal hindpaw. The results of this study show that intrathecal ziconotide is antinociceptive in a rat incisional model of post-operative pain and is more potent, longer acting, and more specific in its actions than intrathecal morphine.
-
Clinical Trial
Duration and distribution of experimental muscle hyperalgesia in humans following combined infusions of serotonin and bradykinin.
The present study examined distribution and duration of muscle hyperalgesia to pressure stimuli after intramuscular bolus-infusions of serotonin (5-HT, 20 nmol) and bradykinin (BKN, 10 nmol) in 10 volunteers. Infusions were given into the tibialis anterior (TA) muscle over 20 s with an inter-infusions interval of 3 min. Infusions of isotonic saline (NaCl, 0.9%) were given as control. ⋯ Serotonin may enhance the effect of bradykinin in producing experimental muscle pain and muscle hyperalgesia to mechanical stimuli. The combination of serotonin and bradykinin can produce muscle hyperalgesia, lasted for up to 40 min and located within the muscle. No widespread hyperalgesia to the ankle and other leg (tested at 10 cm below the patella and ankle) was observed suggesting a predominant peripheral origin of the experimentally induced hyperalgesic stage.
-
The relationship between joint pain and hyperalgesia has been explored in animal models of articular inflammation, but is yet to be shown in the most common rheumatologic condition: osteoarthritis. In this study, cutaneous thermal and mechanical pain thresholds were measured over the thumb of patients with osteoarthritis of the hands. In symptomatic patients, pain was manipulated through resisted active movement of the thumb. ⋯ Increased mechanical sensitivity after exacerbation of MP was alleviated by A beta fiber blockade. It appears that superficial tenderness over the osteoarthritic thumb fluctuates with pain arising from movement of the joint. It is concluded that dorsal horn mechanisms contribute to MP-related hyperalgesia in osteoarthritis of the hands.